{"title":"表观遗传修饰剂作为真菌中生物活性次生代谢物的诱导剂","authors":"Vishal Sharma, Shivali Panjgotra, Nisha Sharma, Vidushi Abrol, Umesh Goutam, Sundeep Jaglan","doi":"10.1007/s10529-024-03478-z","DOIUrl":null,"url":null,"abstract":"<p>Scientists are making efforts to search for new metabolites as they are essential lead molecules for the drug discovery, much required due to the evolution of multi drug resistance and new diseases. Moreover, higher production of known drugs is required because of the ever growing population. Microorganisms offer a vast collection of chemically distinct compounds that exhibit various biological functions. They play a crucial role in safeguarding crops, agriculture, and combating several infectious ailments and cancer. Research on fungi have grabbed a lot of attention after the discovery of penicillin, most of the compounds produced by fungi under normal cultivation conditions are discovered and now rarely new compounds are discovered. Treatment of fungi with the epigenetic modifiers has been becoming very popular since the last few years to boost the discovery of new molecules and enhance the production of already known molecules. Epigenetic literally means above genetics that actually does not alter the genome but alter its expression by altering the state of chromatin from heterochromatin to euchromatin. Chromatin in heterochromatin state usually doesn’t express because it is closely packed by histones in this state. Epigenetic modifiers loosen the packing of chromatin by inhibiting DNA methylation and histone deacetylation and thus permit the expression of genes that usually remain dormant. This study delves into the possibility of utilizing epigenetic modifying agents to generate pharmacologically significant secondary metabolites from fungi.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":"145 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetic modifiers as inducer of bioactive secondary metabolites in fungi\",\"authors\":\"Vishal Sharma, Shivali Panjgotra, Nisha Sharma, Vidushi Abrol, Umesh Goutam, Sundeep Jaglan\",\"doi\":\"10.1007/s10529-024-03478-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Scientists are making efforts to search for new metabolites as they are essential lead molecules for the drug discovery, much required due to the evolution of multi drug resistance and new diseases. Moreover, higher production of known drugs is required because of the ever growing population. Microorganisms offer a vast collection of chemically distinct compounds that exhibit various biological functions. They play a crucial role in safeguarding crops, agriculture, and combating several infectious ailments and cancer. Research on fungi have grabbed a lot of attention after the discovery of penicillin, most of the compounds produced by fungi under normal cultivation conditions are discovered and now rarely new compounds are discovered. Treatment of fungi with the epigenetic modifiers has been becoming very popular since the last few years to boost the discovery of new molecules and enhance the production of already known molecules. Epigenetic literally means above genetics that actually does not alter the genome but alter its expression by altering the state of chromatin from heterochromatin to euchromatin. Chromatin in heterochromatin state usually doesn’t express because it is closely packed by histones in this state. Epigenetic modifiers loosen the packing of chromatin by inhibiting DNA methylation and histone deacetylation and thus permit the expression of genes that usually remain dormant. This study delves into the possibility of utilizing epigenetic modifying agents to generate pharmacologically significant secondary metabolites from fungi.</p>\",\"PeriodicalId\":8929,\"journal\":{\"name\":\"Biotechnology Letters\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-024-03478-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03478-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Epigenetic modifiers as inducer of bioactive secondary metabolites in fungi
Scientists are making efforts to search for new metabolites as they are essential lead molecules for the drug discovery, much required due to the evolution of multi drug resistance and new diseases. Moreover, higher production of known drugs is required because of the ever growing population. Microorganisms offer a vast collection of chemically distinct compounds that exhibit various biological functions. They play a crucial role in safeguarding crops, agriculture, and combating several infectious ailments and cancer. Research on fungi have grabbed a lot of attention after the discovery of penicillin, most of the compounds produced by fungi under normal cultivation conditions are discovered and now rarely new compounds are discovered. Treatment of fungi with the epigenetic modifiers has been becoming very popular since the last few years to boost the discovery of new molecules and enhance the production of already known molecules. Epigenetic literally means above genetics that actually does not alter the genome but alter its expression by altering the state of chromatin from heterochromatin to euchromatin. Chromatin in heterochromatin state usually doesn’t express because it is closely packed by histones in this state. Epigenetic modifiers loosen the packing of chromatin by inhibiting DNA methylation and histone deacetylation and thus permit the expression of genes that usually remain dormant. This study delves into the possibility of utilizing epigenetic modifying agents to generate pharmacologically significant secondary metabolites from fungi.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.