在阿拉巴马州威廉-班克黑德国家森林的杂木林中用无人机点火的案例研究

IF 3.6 3区 环境科学与生态学 Q1 ECOLOGY
John Craycroft, Callie Schweitzer
{"title":"在阿拉巴马州威廉-班克黑德国家森林的杂木林中用无人机点火的案例研究","authors":"John Craycroft, Callie Schweitzer","doi":"10.1186/s42408-024-00263-1","DOIUrl":null,"url":null,"abstract":"For at least four decades, practitioners have recognized advantages of aerial versus ground ignition for maximizing the effectiveness of prescribed fires. For example, larger areas can be ignited in less time, or ignition energy may be variously targeted over an area in accordance with the uneven distribution of fuels. The maturation of wireless communication, geopositioning systems, and unmanned aerial systems (UAS) has enhanced those advantages, and UAS approaches also provide further advantages relative to helicopter ignitions, such as reduced risk to human safety, lower operating costs, and higher operational flexibility. In a long running study at the Bankhead National Forest in northcentral Alabama, prescribed fire has been used for nearly 20 years. Most of the burns have been hand-ignited via drip torches, while some have been aerially ignited via helicopter. In March 2022, for the first time, a UAS was used to ignite prescribed fires across a landscape that included a long-term research stand. This field note relates comparisons of both fire behavior and fuel consumption metrics for the UAS-ignited burn versus previous burns on the same stand, and versus burns of other research stands in the same year. The UAS-ignited prescribed fire experienced burn effects similar to those from ground-ignited prescribed fires on the same stand in previous years, as well as those from ground-ignited prescribed fires on other stands in the same year. This post hoc analysis suggests that UAS ignition approaches may be sufficient for achieving prescribed burn goals, thereby enabling practitioners to realize the advantages offered by that ignition mode.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"120 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case study of UAS ignition of prescribed fire in a mixedwood on the William B. Bankhead National Forest, Alabama\",\"authors\":\"John Craycroft, Callie Schweitzer\",\"doi\":\"10.1186/s42408-024-00263-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For at least four decades, practitioners have recognized advantages of aerial versus ground ignition for maximizing the effectiveness of prescribed fires. For example, larger areas can be ignited in less time, or ignition energy may be variously targeted over an area in accordance with the uneven distribution of fuels. The maturation of wireless communication, geopositioning systems, and unmanned aerial systems (UAS) has enhanced those advantages, and UAS approaches also provide further advantages relative to helicopter ignitions, such as reduced risk to human safety, lower operating costs, and higher operational flexibility. In a long running study at the Bankhead National Forest in northcentral Alabama, prescribed fire has been used for nearly 20 years. Most of the burns have been hand-ignited via drip torches, while some have been aerially ignited via helicopter. In March 2022, for the first time, a UAS was used to ignite prescribed fires across a landscape that included a long-term research stand. This field note relates comparisons of both fire behavior and fuel consumption metrics for the UAS-ignited burn versus previous burns on the same stand, and versus burns of other research stands in the same year. The UAS-ignited prescribed fire experienced burn effects similar to those from ground-ignited prescribed fires on the same stand in previous years, as well as those from ground-ignited prescribed fires on other stands in the same year. This post hoc analysis suggests that UAS ignition approaches may be sufficient for achieving prescribed burn goals, thereby enabling practitioners to realize the advantages offered by that ignition mode.\",\"PeriodicalId\":12273,\"journal\":{\"name\":\"Fire Ecology\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s42408-024-00263-1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s42408-024-00263-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

至少四十年来,实践者已经认识到空中点火相对于地面点火的优势,可以最大限度地提高规定火种的效果。例如,可以在更短的时间内点燃更大的区域,或者可以根据燃料的不均匀分布,在一个区域内点燃不同的能量。无线通信、地理定位系统和无人机系统(UAS)的成熟增强了这些优势,与直升机点火相比,无人机系统方法还具有更多优势,如降低人类安全风险、降低运营成本和提高运营灵活性。在阿拉巴马州中北部的班克黑德国家森林进行的一项长期研究中,规定火种已经使用了近 20 年。大部分燃烧是通过滴水火炬人工点燃的,也有一些是通过直升机空中点燃的。2022 年 3 月,首次使用无人机系统在包括一个长期研究林地在内的地形上点火。本实地说明对无人机系统点火与之前在同一林地上点火以及与同年在其他研究林地上点火的火灾行为和燃料消耗指标进行了比较。由无人机系统点燃的预设火灾所产生的燃烧效果与往年在同一林地上由地面点燃的预设火灾以及同年在其他林地上由地面点燃的预设火灾所产生的燃烧效果相似。这项事后分析表明,无人机系统点火方法可能足以实现规定燃烧目标,从而使实践者能够实现这种点火模式所带来的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Case study of UAS ignition of prescribed fire in a mixedwood on the William B. Bankhead National Forest, Alabama
For at least four decades, practitioners have recognized advantages of aerial versus ground ignition for maximizing the effectiveness of prescribed fires. For example, larger areas can be ignited in less time, or ignition energy may be variously targeted over an area in accordance with the uneven distribution of fuels. The maturation of wireless communication, geopositioning systems, and unmanned aerial systems (UAS) has enhanced those advantages, and UAS approaches also provide further advantages relative to helicopter ignitions, such as reduced risk to human safety, lower operating costs, and higher operational flexibility. In a long running study at the Bankhead National Forest in northcentral Alabama, prescribed fire has been used for nearly 20 years. Most of the burns have been hand-ignited via drip torches, while some have been aerially ignited via helicopter. In March 2022, for the first time, a UAS was used to ignite prescribed fires across a landscape that included a long-term research stand. This field note relates comparisons of both fire behavior and fuel consumption metrics for the UAS-ignited burn versus previous burns on the same stand, and versus burns of other research stands in the same year. The UAS-ignited prescribed fire experienced burn effects similar to those from ground-ignited prescribed fires on the same stand in previous years, as well as those from ground-ignited prescribed fires on other stands in the same year. This post hoc analysis suggests that UAS ignition approaches may be sufficient for achieving prescribed burn goals, thereby enabling practitioners to realize the advantages offered by that ignition mode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire Ecology
Fire Ecology ECOLOGY-FORESTRY
CiteScore
6.20
自引率
7.80%
发文量
24
审稿时长
20 weeks
期刊介绍: Fire Ecology is the international scientific journal supported by the Association for Fire Ecology. Fire Ecology publishes peer-reviewed articles on all ecological and management aspects relating to wildland fire. We welcome submissions on topics that include a broad range of research on the ecological relationships of fire to its environment, including, but not limited to: Ecology (physical and biological fire effects, fire regimes, etc.) Social science (geography, sociology, anthropology, etc.) Fuel Fire science and modeling Planning and risk management Law and policy Fire management Inter- or cross-disciplinary fire-related topics Technology transfer products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信