基于 CpRu 的脱烯丙基催化剂的两面性及其在细胞内原药释放中的应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alain Baiyoumy, Robin Vinck, Thomas R. Ward
{"title":"基于 CpRu 的脱烯丙基催化剂的两面性及其在细胞内原药释放中的应用","authors":"Alain Baiyoumy,&nbsp;Robin Vinck,&nbsp;Thomas R. Ward","doi":"10.1002/hlca.202400053","DOIUrl":null,"url":null,"abstract":"<p>In the past 18 years, metal-catalyzed deallylation has proven a useful tool for studying biological processes <i>in cellulo</i> and in the early development of innovative therapeutic catalytic strategies. This reaction is catalyzed by Ru-piano stool complexes and has been reported to be compatible with air, water, and thiol-containing compounds such as glutathione. However, little is known about the true influence of biological components on the outcome of this reaction. The results presented herein reveal that the co-solvent used in the reaction affects the complex's stability and activity in air, while the presence of glutathione contributes to minimizing the formation of <i>N-</i>allylated by-products. In addition, we studied the effect of air on the Ru-catalyzed deallylation. Importantly, we found that, in the presence of air, the complex is deactivated and oxidizes glutathione into its disulfide.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hlca.202400053","citationCount":"0","resultStr":"{\"title\":\"The Two Janus Faces of CpRu-Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging\",\"authors\":\"Alain Baiyoumy,&nbsp;Robin Vinck,&nbsp;Thomas R. Ward\",\"doi\":\"10.1002/hlca.202400053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the past 18 years, metal-catalyzed deallylation has proven a useful tool for studying biological processes <i>in cellulo</i> and in the early development of innovative therapeutic catalytic strategies. This reaction is catalyzed by Ru-piano stool complexes and has been reported to be compatible with air, water, and thiol-containing compounds such as glutathione. However, little is known about the true influence of biological components on the outcome of this reaction. The results presented herein reveal that the co-solvent used in the reaction affects the complex's stability and activity in air, while the presence of glutathione contributes to minimizing the formation of <i>N-</i>allylated by-products. In addition, we studied the effect of air on the Ru-catalyzed deallylation. Importantly, we found that, in the presence of air, the complex is deactivated and oxidizes glutathione into its disulfide.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hlca.202400053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hlca.202400053\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hlca.202400053","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在过去 18 年中,金属催化脱烯丙基反应已被证明是研究细胞生物过程和早期开发创新治疗催化策略的有用工具。该反应由 Ru-piano stool 复合物催化,据报道可与空气、水和谷胱甘肽等含硫醇的化合物相容。然而,人们对生物成分对这一反应结果的真正影响知之甚少。本文的研究结果表明,反应中使用的助溶剂会影响复合物在空气中的稳定性和活性,而谷胱甘肽的存在则有助于最大限度地减少 N-烯丙基化副产物的形成。此外,我们还研究了空气对 Ru 催化脱烯丙基反应的影响。重要的是,我们发现在空气存在的情况下,复合物会失去活性,并将谷胱甘肽氧化成其二硫化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Two Janus Faces of CpRu-Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging

The Two Janus Faces of CpRu-Based Deallylation Catalysts and Their Application for in Cellulo Prodrug Uncaging

In the past 18 years, metal-catalyzed deallylation has proven a useful tool for studying biological processes in cellulo and in the early development of innovative therapeutic catalytic strategies. This reaction is catalyzed by Ru-piano stool complexes and has been reported to be compatible with air, water, and thiol-containing compounds such as glutathione. However, little is known about the true influence of biological components on the outcome of this reaction. The results presented herein reveal that the co-solvent used in the reaction affects the complex's stability and activity in air, while the presence of glutathione contributes to minimizing the formation of N-allylated by-products. In addition, we studied the effect of air on the Ru-catalyzed deallylation. Importantly, we found that, in the presence of air, the complex is deactivated and oxidizes glutathione into its disulfide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信