Arthur Coquereau, Florian Sévellec, Thierry Huck, Joël J.-M. Hirschi, Antoine Hochet
{"title":"CMIP6 多集合模拟中年际至十年期气候变异性的人为变化","authors":"Arthur Coquereau, Florian Sévellec, Thierry Huck, Joël J.-M. Hirschi, Antoine Hochet","doi":"10.1175/jcli-d-23-0606.1","DOIUrl":null,"url":null,"abstract":"Abstract As well as having an impact on the background state of the climate, global warming due to human activities could affect its natural oscillations and internal variability. In this study, we use four initial-condition ensembles from the CMIP6 framework to investigate the potential evolution of internal climate variability under different warming pathways for the 21st century. Our results suggest significant changes in natural climate variability, and point to two distinct regimes driving these changes. First, a decrease of internal variability of surface air temperature at high latitudes and all frequencies, associated with a poleward shift and the gradual disappearance of sea-ice edges, which we show to be an important component of internal variability. Second, an intensification of the interannual variability of surface air temperature and precipitation at low latitudes, which appears to be associated with the El Niño–Southern Oscillation (ENSO). This second regime is particularly alarming because it may contribute to making the climate more unstable and less predictable, with a significant impact on human societies and ecosystems.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"19 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anthropogenic changes of interannual-to-decadal climate variability in CMIP6 multi-ensemble simulations\",\"authors\":\"Arthur Coquereau, Florian Sévellec, Thierry Huck, Joël J.-M. Hirschi, Antoine Hochet\",\"doi\":\"10.1175/jcli-d-23-0606.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As well as having an impact on the background state of the climate, global warming due to human activities could affect its natural oscillations and internal variability. In this study, we use four initial-condition ensembles from the CMIP6 framework to investigate the potential evolution of internal climate variability under different warming pathways for the 21st century. Our results suggest significant changes in natural climate variability, and point to two distinct regimes driving these changes. First, a decrease of internal variability of surface air temperature at high latitudes and all frequencies, associated with a poleward shift and the gradual disappearance of sea-ice edges, which we show to be an important component of internal variability. Second, an intensification of the interannual variability of surface air temperature and precipitation at low latitudes, which appears to be associated with the El Niño–Southern Oscillation (ENSO). This second regime is particularly alarming because it may contribute to making the climate more unstable and less predictable, with a significant impact on human societies and ecosystems.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0606.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0606.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Anthropogenic changes of interannual-to-decadal climate variability in CMIP6 multi-ensemble simulations
Abstract As well as having an impact on the background state of the climate, global warming due to human activities could affect its natural oscillations and internal variability. In this study, we use four initial-condition ensembles from the CMIP6 framework to investigate the potential evolution of internal climate variability under different warming pathways for the 21st century. Our results suggest significant changes in natural climate variability, and point to two distinct regimes driving these changes. First, a decrease of internal variability of surface air temperature at high latitudes and all frequencies, associated with a poleward shift and the gradual disappearance of sea-ice edges, which we show to be an important component of internal variability. Second, an intensification of the interannual variability of surface air temperature and precipitation at low latitudes, which appears to be associated with the El Niño–Southern Oscillation (ENSO). This second regime is particularly alarming because it may contribute to making the climate more unstable and less predictable, with a significant impact on human societies and ecosystems.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.