波动力作用下均聚物和杂聚物在图案化孔隙中的迁移

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Gokul Upadhyay, Rajeev Kapri, Abhishek Chaudhuri
{"title":"波动力作用下均聚物和杂聚物在图案化孔隙中的迁移","authors":"Gokul Upadhyay,&nbsp;Rajeev Kapri,&nbsp;Abhishek Chaudhuri","doi":"10.1140/epje/s10189-024-00417-8","DOIUrl":null,"url":null,"abstract":"<p>We investigate the translocation of a semiflexible polymer through extended patterned pores using Langevin dynamics simulations, specifically focusing on the influence of a time-dependent driving force. Our findings reveal that, akin to its flexible counterpart, a rigid chain-like molecule translocates faster when subjected to an oscillating force than a constant force of equivalent average magnitude. The enhanced translocation is strongly correlated with the stiffness of the polymer and the stickiness of the pores. The arrangement of the pores plays a pivotal role in translocation dynamics, deeply influenced by the interplay between polymer stiffness and pore-polymer interactions. For heterogeneous polymers with periodically varying stiffness, the oscillating force introduces significant variations in the translocation time distributions based on segment sizes and orientations. On the basis of these insights, we propose a sequencing approach that harnesses distinct pore surface properties that are capable of accurately predicting sequences in heteropolymers with diverse bending rigidities.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homopolymer and heteropolymer translocation through patterned pores under fluctuating forces\",\"authors\":\"Gokul Upadhyay,&nbsp;Rajeev Kapri,&nbsp;Abhishek Chaudhuri\",\"doi\":\"10.1140/epje/s10189-024-00417-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the translocation of a semiflexible polymer through extended patterned pores using Langevin dynamics simulations, specifically focusing on the influence of a time-dependent driving force. Our findings reveal that, akin to its flexible counterpart, a rigid chain-like molecule translocates faster when subjected to an oscillating force than a constant force of equivalent average magnitude. The enhanced translocation is strongly correlated with the stiffness of the polymer and the stickiness of the pores. The arrangement of the pores plays a pivotal role in translocation dynamics, deeply influenced by the interplay between polymer stiffness and pore-polymer interactions. For heterogeneous polymers with periodically varying stiffness, the oscillating force introduces significant variations in the translocation time distributions based on segment sizes and orientations. On the basis of these insights, we propose a sequencing approach that harnesses distinct pore surface properties that are capable of accurately predicting sequences in heteropolymers with diverse bending rigidities.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"47 4\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-024-00417-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00417-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们利用朗格文动力学模拟研究了半柔性聚合物通过扩展图案孔隙的易位,特别侧重于随时间变化的驱动力的影响。我们的研究结果表明,与柔性分子类似,刚性链状分子在受到摆动力作用时的移位速度要快于受到平均大小相当的恒定力作用时的移位速度。移位的增强与聚合物的硬度和孔隙的粘性密切相关。孔隙的排列在易位动力学中起着关键作用,深受聚合物刚度和孔隙-聚合物相互作用的影响。对于具有周期性刚度变化的异质聚合物,振荡力会根据孔段大小和取向对易位时间分布产生显著变化。基于这些见解,我们提出了一种测序方法,利用独特的孔隙表面特性,能够准确预测具有不同弯曲刚度的异质聚合物的序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Homopolymer and heteropolymer translocation through patterned pores under fluctuating forces

Homopolymer and heteropolymer translocation through patterned pores under fluctuating forces

We investigate the translocation of a semiflexible polymer through extended patterned pores using Langevin dynamics simulations, specifically focusing on the influence of a time-dependent driving force. Our findings reveal that, akin to its flexible counterpart, a rigid chain-like molecule translocates faster when subjected to an oscillating force than a constant force of equivalent average magnitude. The enhanced translocation is strongly correlated with the stiffness of the polymer and the stickiness of the pores. The arrangement of the pores plays a pivotal role in translocation dynamics, deeply influenced by the interplay between polymer stiffness and pore-polymer interactions. For heterogeneous polymers with periodically varying stiffness, the oscillating force introduces significant variations in the translocation time distributions based on segment sizes and orientations. On the basis of these insights, we propose a sequencing approach that harnesses distinct pore surface properties that are capable of accurately predicting sequences in heteropolymers with diverse bending rigidities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信