{"title":"关于实Rel折线的遍历理论","authors":"Jon Chaika, Barak Weiss","doi":"10.1017/fmp.2024.6","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${{\\mathcal {H}}}$</span></span></img></span></span> be a stratum of translation surfaces with at least two singularities, let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{{\\mathcal {H}}}}$</span></span></img></span></span> denote the Masur-Veech measure on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${{\\mathcal {H}}}$</span></span></img></span></span>, and let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> be a flow on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$({{\\mathcal {H}}}, m_{{{\\mathcal {H}}}})$</span></span></img></span></span> obtained by integrating a Rel vector field. We prove that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$({\\mathcal L}, m_{{\\mathcal L}})$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal L} \\subset {{\\mathcal {H}}}$</span></span></img></span></span> is an orbit-closure for the action of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G = \\operatorname {SL}_2({\\mathbb {R}})$</span></span></img></span></span> (i.e., an affine invariant subvariety) and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{\\mathcal L}}$</span></span></img></span></span> is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> with respect to any of the measures <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{{\\mathcal L}}}$</span></span></img></span></span> is zero.</p>","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"206 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the ergodic theory of the real Rel foliation\",\"authors\":\"Jon Chaika, Barak Weiss\",\"doi\":\"10.1017/fmp.2024.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${{\\\\mathcal {H}}}$</span></span></img></span></span> be a stratum of translation surfaces with at least two singularities, let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m_{{{\\\\mathcal {H}}}}$</span></span></img></span></span> denote the Masur-Veech measure on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${{\\\\mathcal {H}}}$</span></span></img></span></span>, and let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Z_0$</span></span></img></span></span> be a flow on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$({{\\\\mathcal {H}}}, m_{{{\\\\mathcal {H}}}})$</span></span></img></span></span> obtained by integrating a Rel vector field. We prove that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Z_0$</span></span></img></span></span> is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$({\\\\mathcal L}, m_{{\\\\mathcal L}})$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal L} \\\\subset {{\\\\mathcal {H}}}$</span></span></img></span></span> is an orbit-closure for the action of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G = \\\\operatorname {SL}_2({\\\\mathbb {R}})$</span></span></img></span></span> (i.e., an affine invariant subvariety) and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m_{{\\\\mathcal L}}$</span></span></img></span></span> is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Z_0$</span></span></img></span></span> with respect to any of the measures <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m_{{{\\\\mathcal L}}}$</span></span></img></span></span> is zero.</p>\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2024.6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let ${{\mathcal {H}}}$ be a stratum of translation surfaces with at least two singularities, let $m_{{{\mathcal {H}}}}$ denote the Masur-Veech measure on ${{\mathcal {H}}}$, and let $Z_0$ be a flow on $({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$ obtained by integrating a Rel vector field. We prove that $Z_0$ is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces $({\mathcal L}, m_{{\mathcal L}})$, where ${\mathcal L} \subset {{\mathcal {H}}}$ is an orbit-closure for the action of $G = \operatorname {SL}_2({\mathbb {R}})$ (i.e., an affine invariant subvariety) and $m_{{\mathcal L}}$ is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of $Z_0$ with respect to any of the measures $m_{{{\mathcal L}}}$ is zero.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.