关于实Rel折线的遍历理论

IF 2.8 1区 数学 Q1 MATHEMATICS
Jon Chaika, Barak Weiss
{"title":"关于实Rel折线的遍历理论","authors":"Jon Chaika, Barak Weiss","doi":"10.1017/fmp.2024.6","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${{\\mathcal {H}}}$</span></span></img></span></span> be a stratum of translation surfaces with at least two singularities, let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{{\\mathcal {H}}}}$</span></span></img></span></span> denote the Masur-Veech measure on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${{\\mathcal {H}}}$</span></span></img></span></span>, and let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> be a flow on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$({{\\mathcal {H}}}, m_{{{\\mathcal {H}}}})$</span></span></img></span></span> obtained by integrating a Rel vector field. We prove that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$({\\mathcal L}, m_{{\\mathcal L}})$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal L} \\subset {{\\mathcal {H}}}$</span></span></img></span></span> is an orbit-closure for the action of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$G = \\operatorname {SL}_2({\\mathbb {R}})$</span></span></img></span></span> (i.e., an affine invariant subvariety) and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{\\mathcal L}}$</span></span></img></span></span> is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$Z_0$</span></span></img></span></span> with respect to any of the measures <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$m_{{{\\mathcal L}}}$</span></span></img></span></span> is zero.</p>","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"206 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the ergodic theory of the real Rel foliation\",\"authors\":\"Jon Chaika, Barak Weiss\",\"doi\":\"10.1017/fmp.2024.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${{\\\\mathcal {H}}}$</span></span></img></span></span> be a stratum of translation surfaces with at least two singularities, let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m_{{{\\\\mathcal {H}}}}$</span></span></img></span></span> denote the Masur-Veech measure on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${{\\\\mathcal {H}}}$</span></span></img></span></span>, and let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Z_0$</span></span></img></span></span> be a flow on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$({{\\\\mathcal {H}}}, m_{{{\\\\mathcal {H}}}})$</span></span></img></span></span> obtained by integrating a Rel vector field. We prove that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Z_0$</span></span></img></span></span> is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$({\\\\mathcal L}, m_{{\\\\mathcal L}})$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal L} \\\\subset {{\\\\mathcal {H}}}$</span></span></img></span></span> is an orbit-closure for the action of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G = \\\\operatorname {SL}_2({\\\\mathbb {R}})$</span></span></img></span></span> (i.e., an affine invariant subvariety) and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m_{{\\\\mathcal L}}$</span></span></img></span></span> is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Z_0$</span></span></img></span></span> with respect to any of the measures <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329055111250-0254:S2050508624000064:S2050508624000064_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m_{{{\\\\mathcal L}}}$</span></span></img></span></span> is zero.</p>\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2024.6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 ${{\mathcal {H}}$ 是至少有两个奇点的平移面层,让 $m_{{\mathcal {H}}}}$ 表示 ${{\mathcal {H}}$ 上的马苏尔-维奇量纲,让 $Z_0$ 是通过积分一个 Rel 向量场得到的 $({{\mathcal {H}}, m_{{\mathcal {H}}}})$ 上的流。我们证明 $Z_0$ 是所有阶的混合流,尤其是遍历流。对于更一般的空间$({\mathcal L}, m_{\mathcal L}})$,其中${\mathcal L} \subset {{\mathcal L}, m_{\mathcal L}})$,我们还描述了由Rel向量场定义的流的遍历性。\子集 {{\mathcal {H}}$ 是 $G = \operatorname {SL}_2({\mathbb {R}})$(即仿射不变子域)作用的轨道闭包,而 $m_{{mathcal L}}$ 是自然度量。这些结果以布朗、埃斯金、菲利普和罗德里格斯-赫兹即将提出的度量分类结果为条件。我们还证明了 $Z_0$ 相对于任何一个度量 $m_{{{mathcal L}}$ 的熵为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the ergodic theory of the real Rel foliation

Let ${{\mathcal {H}}}$ be a stratum of translation surfaces with at least two singularities, let $m_{{{\mathcal {H}}}}$ denote the Masur-Veech measure on ${{\mathcal {H}}}$, and let $Z_0$ be a flow on $({{\mathcal {H}}}, m_{{{\mathcal {H}}}})$ obtained by integrating a Rel vector field. We prove that $Z_0$ is mixing of all orders, and in particular is ergodic. We also characterize the ergodicity of flows defined by Rel vector fields, for more general spaces $({\mathcal L}, m_{{\mathcal L}})$, where ${\mathcal L} \subset {{\mathcal {H}}}$ is an orbit-closure for the action of $G = \operatorname {SL}_2({\mathbb {R}})$ (i.e., an affine invariant subvariety) and $m_{{\mathcal L}}$ is the natural measure. These results are conditional on a forthcoming measure classification result of Brown, Eskin, Filip and Rodriguez-Hertz. We also prove that the entropy of $Z_0$ with respect to any of the measures $m_{{{\mathcal L}}}$ is zero.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信