色度傅立叶变换

IF 2.8 1区 数学 Q1 MATHEMATICS
Tobias Barthel, Shachar Carmeli, Tomer M. Schlank, Lior Yanovski
{"title":"色度傅立叶变换","authors":"Tobias Barthel, Shachar Carmeli, Tomer M. Schlank, Lior Yanovski","doi":"10.1017/fmp.2024.5","DOIUrl":null,"url":null,"abstract":"<p>We develop a general theory of higher semiadditive Fourier transforms that includes both the classical discrete Fourier transform for finite abelian groups at height <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$n=0$</span></span></img></span></span>, as well as a certain duality for the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$E_n$</span></span></img></span></span>-(co)homology of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi $</span></span></img></span></span>-finite spectra, established by Hopkins and Lurie, at heights <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n\\ge 1$</span></span></img></span></span>. We use this theory to generalize said duality in three different directions. First, we extend it from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}$</span></span></img></span></span>-module spectra to all (suitably finite) spectra and use it to compute the discrepancy spectrum of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$E_n$</span></span></img></span></span>. Second, we lift it to the telescopic setting by replacing <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$E_n$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$T(n)$</span></span></img></span></span>-local higher cyclotomic extensions, from which we deduce various results on affineness, Eilenberg–Moore formulas and Galois extensions in the telescopic setting. Third, we categorify their result into an equivalence of two symmetric monoidal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\infty $</span></span></img></span></span>-categories of local systems of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$K(n)$</span></span></img></span></span>-local <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$E_n$</span></span></img></span></span>-modules [-12pc] and relate it to (semiadditive) redshift phenomena.<caption><p>The Great Wave off Kanagawa, Katsushika Hokusai.</p></caption><img href=\"S2050508624000052_figu1.png\" mimesubtype=\"png\" mimetype=\"\" orientation=\"\" position=\"anchor\" src=\"https://static.cambridge.org//content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS2050508624000052/resource/name/optimisedImage-png-S2050508624000052_figu1.jpg?pub-status=live\" type=\"\"/></p>","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"207 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Chromatic Fourier Transform\",\"authors\":\"Tobias Barthel, Shachar Carmeli, Tomer M. Schlank, Lior Yanovski\",\"doi\":\"10.1017/fmp.2024.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a general theory of higher semiadditive Fourier transforms that includes both the classical discrete Fourier transform for finite abelian groups at height <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n=0$</span></span></img></span></span>, as well as a certain duality for the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_n$</span></span></img></span></span>-(co)homology of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi $</span></span></img></span></span>-finite spectra, established by Hopkins and Lurie, at heights <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n\\\\ge 1$</span></span></img></span></span>. We use this theory to generalize said duality in three different directions. First, we extend it from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}$</span></span></img></span></span>-module spectra to all (suitably finite) spectra and use it to compute the discrepancy spectrum of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_n$</span></span></img></span></span>. Second, we lift it to the telescopic setting by replacing <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_n$</span></span></img></span></span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T(n)$</span></span></img></span></span>-local higher cyclotomic extensions, from which we deduce various results on affineness, Eilenberg–Moore formulas and Galois extensions in the telescopic setting. Third, we categorify their result into an equivalence of two symmetric monoidal <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\infty $</span></span></img></span></span>-categories of local systems of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K(n)$</span></span></img></span></span>-local <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_n$</span></span></img></span></span>-modules [-12pc] and relate it to (semiadditive) redshift phenomena.<caption><p>The Great Wave off Kanagawa, Katsushika Hokusai.</p></caption><img href=\\\"S2050508624000052_figu1.png\\\" mimesubtype=\\\"png\\\" mimetype=\\\"\\\" orientation=\\\"\\\" position=\\\"anchor\\\" src=\\\"https://static.cambridge.org//content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS2050508624000052/resource/name/optimisedImage-png-S2050508624000052_figu1.jpg?pub-status=live\\\" type=\\\"\\\"/></p>\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\"207 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2024.5\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们发展了高半加傅里叶变换的一般理论,其中既包括高度为 $n=0$ 的有限无性群的经典离散傅里叶变换,也包括霍普金斯和卢里建立的高度为 $n\ge 1$ 的 $E_n$-(co)homology of $\pi $-finite spectra 的某种对偶性。我们利用这一理论在三个不同的方向上推广了上述对偶性。首先,我们把它从 $\mathbb {Z}$ 模块谱扩展到所有(适当有限的)谱,并用它来计算 $E_n$ 的差异谱。其次,我们将 $E_n$ 替换为 $T(n)$ 局域高回旋扩展,从而将其提升到望远镜环境,并由此推导出望远镜环境中关于亲和性、艾伦伯格-摩尔公式和伽罗瓦扩展的各种结果。第三,我们将他们的结果归类为 $K(n)$ 本地 $E_n$ 模块的本地系统的两个对称单环 $/infty $ 类的等价性 [-12pc],并将其与(半加性)红移现象联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Chromatic Fourier Transform

We develop a general theory of higher semiadditive Fourier transforms that includes both the classical discrete Fourier transform for finite abelian groups at height $n=0$, as well as a certain duality for the $E_n$-(co)homology of $\pi $-finite spectra, established by Hopkins and Lurie, at heights $n\ge 1$. We use this theory to generalize said duality in three different directions. First, we extend it from $\mathbb {Z}$-module spectra to all (suitably finite) spectra and use it to compute the discrepancy spectrum of $E_n$. Second, we lift it to the telescopic setting by replacing $E_n$ with $T(n)$-local higher cyclotomic extensions, from which we deduce various results on affineness, Eilenberg–Moore formulas and Galois extensions in the telescopic setting. Third, we categorify their result into an equivalence of two symmetric monoidal $\infty $-categories of local systems of $K(n)$-local $E_n$-modules [-12pc] and relate it to (semiadditive) redshift phenomena.

The Great Wave off Kanagawa, Katsushika Hokusai.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信