Tobias Barthel, Shachar Carmeli, Tomer M. Schlank, Lior Yanovski
{"title":"色度傅立叶变换","authors":"Tobias Barthel, Shachar Carmeli, Tomer M. Schlank, Lior Yanovski","doi":"10.1017/fmp.2024.5","DOIUrl":null,"url":null,"abstract":"<p>We develop a general theory of higher semiadditive Fourier transforms that includes both the classical discrete Fourier transform for finite abelian groups at height <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$n=0$</span></span></img></span></span>, as well as a certain duality for the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$E_n$</span></span></img></span></span>-(co)homology of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi $</span></span></img></span></span>-finite spectra, established by Hopkins and Lurie, at heights <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n\\ge 1$</span></span></img></span></span>. We use this theory to generalize said duality in three different directions. First, we extend it from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {Z}$</span></span></img></span></span>-module spectra to all (suitably finite) spectra and use it to compute the discrepancy spectrum of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$E_n$</span></span></img></span></span>. Second, we lift it to the telescopic setting by replacing <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$E_n$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$T(n)$</span></span></img></span></span>-local higher cyclotomic extensions, from which we deduce various results on affineness, Eilenberg–Moore formulas and Galois extensions in the telescopic setting. Third, we categorify their result into an equivalence of two symmetric monoidal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\infty $</span></span></img></span></span>-categories of local systems of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$K(n)$</span></span></img></span></span>-local <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$E_n$</span></span></img></span></span>-modules [-12pc] and relate it to (semiadditive) redshift phenomena.<caption><p>The Great Wave off Kanagawa, Katsushika Hokusai.</p></caption><img href=\"S2050508624000052_figu1.png\" mimesubtype=\"png\" mimetype=\"\" orientation=\"\" position=\"anchor\" src=\"https://static.cambridge.org//content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS2050508624000052/resource/name/optimisedImage-png-S2050508624000052_figu1.jpg?pub-status=live\" type=\"\"/></p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Chromatic Fourier Transform\",\"authors\":\"Tobias Barthel, Shachar Carmeli, Tomer M. Schlank, Lior Yanovski\",\"doi\":\"10.1017/fmp.2024.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a general theory of higher semiadditive Fourier transforms that includes both the classical discrete Fourier transform for finite abelian groups at height <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n=0$</span></span></img></span></span>, as well as a certain duality for the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_n$</span></span></img></span></span>-(co)homology of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi $</span></span></img></span></span>-finite spectra, established by Hopkins and Lurie, at heights <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n\\\\ge 1$</span></span></img></span></span>. We use this theory to generalize said duality in three different directions. First, we extend it from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {Z}$</span></span></img></span></span>-module spectra to all (suitably finite) spectra and use it to compute the discrepancy spectrum of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_n$</span></span></img></span></span>. Second, we lift it to the telescopic setting by replacing <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_n$</span></span></img></span></span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T(n)$</span></span></img></span></span>-local higher cyclotomic extensions, from which we deduce various results on affineness, Eilenberg–Moore formulas and Galois extensions in the telescopic setting. Third, we categorify their result into an equivalence of two symmetric monoidal <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\infty $</span></span></img></span></span>-categories of local systems of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K(n)$</span></span></img></span></span>-local <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405115914080-0098:S2050508624000052:S2050508624000052_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E_n$</span></span></img></span></span>-modules [-12pc] and relate it to (semiadditive) redshift phenomena.<caption><p>The Great Wave off Kanagawa, Katsushika Hokusai.</p></caption><img href=\\\"S2050508624000052_figu1.png\\\" mimesubtype=\\\"png\\\" mimetype=\\\"\\\" orientation=\\\"\\\" position=\\\"anchor\\\" src=\\\"https://static.cambridge.org//content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS2050508624000052/resource/name/optimisedImage-png-S2050508624000052_figu1.jpg?pub-status=live\\\" type=\\\"\\\"/></p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2024.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2024.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
We develop a general theory of higher semiadditive Fourier transforms that includes both the classical discrete Fourier transform for finite abelian groups at height $n=0$, as well as a certain duality for the $E_n$-(co)homology of $\pi $-finite spectra, established by Hopkins and Lurie, at heights $n\ge 1$. We use this theory to generalize said duality in three different directions. First, we extend it from $\mathbb {Z}$-module spectra to all (suitably finite) spectra and use it to compute the discrepancy spectrum of $E_n$. Second, we lift it to the telescopic setting by replacing $E_n$ with $T(n)$-local higher cyclotomic extensions, from which we deduce various results on affineness, Eilenberg–Moore formulas and Galois extensions in the telescopic setting. Third, we categorify their result into an equivalence of two symmetric monoidal $\infty $-categories of local systems of $K(n)$-local $E_n$-modules [-12pc] and relate it to (semiadditive) redshift phenomena.