Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff
{"title":"推进氧气分离:对 La0.7Ca0.3Co0.3Fe0.6M0.1O3-δ(M = 铜、锌)氧气传输膜的实验和计算分析的启示","authors":"Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff","doi":"10.1007/s11705-024-2421-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, perovskite-type La<sub>0.7</sub>Ca<sub>0.3</sub>Co<sub>0.3</sub> Fe<sub>0.6</sub>M<sub>0.1</sub>O<sub>3−<i>δ</i></sub> (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO<sub>2</sub> tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La<sub>0.7</sub>Ca<sub>0.3</sub>Co<sub>0.3</sub>Fe<sub>0.6</sub>Zn<sub>0.1</sub>O<sub>3</sub><sub>−<i>δ</i></sub> exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min<sup>−1</sup>cm<sup>−2</sup> under air/He and air/CO<sub>2</sub> gradients at 1173 K, respectively. After 1600 h of CO<sub>2</sub> exposure, the perovskite structure remained intact, showcasing superior CO<sub>2</sub> resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO<sub>2</sub>-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) oxygen transport membranes\",\"authors\":\"Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff\",\"doi\":\"10.1007/s11705-024-2421-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, perovskite-type La<sub>0.7</sub>Ca<sub>0.3</sub>Co<sub>0.3</sub> Fe<sub>0.6</sub>M<sub>0.1</sub>O<sub>3−<i>δ</i></sub> (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO<sub>2</sub> tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La<sub>0.7</sub>Ca<sub>0.3</sub>Co<sub>0.3</sub>Fe<sub>0.6</sub>Zn<sub>0.1</sub>O<sub>3</sub><sub>−<i>δ</i></sub> exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min<sup>−1</sup>cm<sup>−2</sup> under air/He and air/CO<sub>2</sub> gradients at 1173 K, respectively. After 1600 h of CO<sub>2</sub> exposure, the perovskite structure remained intact, showcasing superior CO<sub>2</sub> resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO<sub>2</sub>-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2421-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2421-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) oxygen transport membranes
In this study, perovskite-type La0.7Ca0.3Co0.3 Fe0.6M0.1O3−δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3−δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.