在叠氮聚合物中直接压印光天翁作为光诱导浮雕结构

IF 5.4 1区 物理与天体物理 Q1 OPTICS
APL Photonics Pub Date : 2024-04-04 DOI:10.1063/5.0192239
Rihito Tamura, Praveen Kumar, A. Srinivasa Rao, Kazuki Tsuda, Fanny Getzlaff, Katsuhiko Miyamoto, Natalia M. Litchinitser, Takashige Omatsu
{"title":"在叠氮聚合物中直接压印光天翁作为光诱导浮雕结构","authors":"Rihito Tamura, Praveen Kumar, A. Srinivasa Rao, Kazuki Tsuda, Fanny Getzlaff, Katsuhiko Miyamoto, Natalia M. Litchinitser, Takashige Omatsu","doi":"10.1063/5.0192239","DOIUrl":null,"url":null,"abstract":"Skyrmions, topologically stable configurations of a three-component vector field with sophisticated textures, have been considered in many contexts, including atomic physics, Bose–Einstein condensates, liquid crystals, and magnetic materials. Although optical counterparts of skyrmions have extensively been studied theoretically and recently demonstrated in the laboratory experiments, their experimental mapping is challenging due to the fine, three-dimensional, and complicated structure of their polarization distributions. Here, we propose and demonstrate a straightforward mapping of the polarization textures of optical Néel-, Bloch-, and anti-skyrmions based on the radiation pressure and direct imprinting of the skyrmion textures on azopolymers. These results not only elucidate the exotic interaction that occurs between topologically protected quasiparticles of light and matter but also provide a simple approach for generation and characterization of optical skyrmions, based on a dual-path polarization shaping configuration with a single spatial light modulator, and their measurements based on the radiation pressure.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"37 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct imprint of optical skyrmions in azopolymers as photoinduced relief structures\",\"authors\":\"Rihito Tamura, Praveen Kumar, A. Srinivasa Rao, Kazuki Tsuda, Fanny Getzlaff, Katsuhiko Miyamoto, Natalia M. Litchinitser, Takashige Omatsu\",\"doi\":\"10.1063/5.0192239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skyrmions, topologically stable configurations of a three-component vector field with sophisticated textures, have been considered in many contexts, including atomic physics, Bose–Einstein condensates, liquid crystals, and magnetic materials. Although optical counterparts of skyrmions have extensively been studied theoretically and recently demonstrated in the laboratory experiments, their experimental mapping is challenging due to the fine, three-dimensional, and complicated structure of their polarization distributions. Here, we propose and demonstrate a straightforward mapping of the polarization textures of optical Néel-, Bloch-, and anti-skyrmions based on the radiation pressure and direct imprinting of the skyrmion textures on azopolymers. These results not only elucidate the exotic interaction that occurs between topologically protected quasiparticles of light and matter but also provide a simple approach for generation and characterization of optical skyrmions, based on a dual-path polarization shaping configuration with a single spatial light modulator, and their measurements based on the radiation pressure.\",\"PeriodicalId\":8198,\"journal\":{\"name\":\"APL Photonics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0192239\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0192239","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

Skyrmions是具有复杂纹理的三分量矢量场的拓扑稳定构型,在原子物理学、玻色-爱因斯坦凝聚体、液晶和磁性材料等许多领域都被研究过。虽然人们对天幕的光学对应物进行了广泛的理论研究,最近还在实验室实验中进行了演示,但由于其偏振分布的精细、三维和复杂结构,对其进行实验测绘具有挑战性。在此,我们提出并演示了一种基于辐射压力和在偶氮聚合物上直接印刻天青石纹理的光学奈尔天青石、布洛赫天青石和反天青石偏振纹理的直接映射方法。这些结果不仅阐明了发生在拓扑保护的光与物质准粒子之间的奇异相互作用,而且还提供了一种生成和表征光学天幕的简单方法,该方法基于使用单个空间光调制器的双路径偏振整形配置,并基于辐射压力对其进行测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct imprint of optical skyrmions in azopolymers as photoinduced relief structures
Skyrmions, topologically stable configurations of a three-component vector field with sophisticated textures, have been considered in many contexts, including atomic physics, Bose–Einstein condensates, liquid crystals, and magnetic materials. Although optical counterparts of skyrmions have extensively been studied theoretically and recently demonstrated in the laboratory experiments, their experimental mapping is challenging due to the fine, three-dimensional, and complicated structure of their polarization distributions. Here, we propose and demonstrate a straightforward mapping of the polarization textures of optical Néel-, Bloch-, and anti-skyrmions based on the radiation pressure and direct imprinting of the skyrmion textures on azopolymers. These results not only elucidate the exotic interaction that occurs between topologically protected quasiparticles of light and matter but also provide a simple approach for generation and characterization of optical skyrmions, based on a dual-path polarization shaping configuration with a single spatial light modulator, and their measurements based on the radiation pressure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信