Ling Shi, Zhongkui Zhu, Nana Wu, Yufeng Chang, Lin Yue, Liang An
{"title":"用于快速吸附水溶液中重金属(铜)的猪骨废弃物天然羟基磷灰石粉(pHAP)","authors":"Ling Shi, Zhongkui Zhu, Nana Wu, Yufeng Chang, Lin Yue, Liang An","doi":"10.1007/s10450-024-00471-w","DOIUrl":null,"url":null,"abstract":"<div><p>Copper ions are prevalent in the natural environment and possess toxicity as heavy metal ions. The removal of Cu<sup>2+</sup> from aqueous solutions can be achieved through adsorption, which is considered a straightforward method. In this study, we employed a facile approach to synthesize pig-bone hydroxyapatite material (pHAP), and the synthesized materials were subjected to characterization using XRD, SEM, FTIR, and BET techniques. The results showed that pHAP has a pure HAP structure, and the surface of HAP has a certain porosity, which provides good conditions for the adsorption of copper ions. Batch adsorption equilibrium experiments were conducted to investigate the various influencing factors, adsorption kinetics, and isotherms. The findings revealed that the optimal adsorption condition of Cu<sup>2+</sup> (50 mg/L) on pHAP was pH 7, 318.15 K, the maximum adsorption capacity was 50.25 mg/g, and the adsorption capacity was superior to some adsorbents of the same type. Moreover, it can retain 74.15% of its reusability after being reused 5 times. The adsorption mechanism primarily involves monolayer adsorption through chemical processes, particularly ion exchange, coprecipitation, and complexation reactions. Therefore, pHAP has industrial application potential in the field of copper ion adsorption.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 6","pages":"801 - 812"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural hydroxyapatite powder from pig-bone waste (pHAP) for the rapid adsorption of heavy metals (Cu) in aqueous solution\",\"authors\":\"Ling Shi, Zhongkui Zhu, Nana Wu, Yufeng Chang, Lin Yue, Liang An\",\"doi\":\"10.1007/s10450-024-00471-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Copper ions are prevalent in the natural environment and possess toxicity as heavy metal ions. The removal of Cu<sup>2+</sup> from aqueous solutions can be achieved through adsorption, which is considered a straightforward method. In this study, we employed a facile approach to synthesize pig-bone hydroxyapatite material (pHAP), and the synthesized materials were subjected to characterization using XRD, SEM, FTIR, and BET techniques. The results showed that pHAP has a pure HAP structure, and the surface of HAP has a certain porosity, which provides good conditions for the adsorption of copper ions. Batch adsorption equilibrium experiments were conducted to investigate the various influencing factors, adsorption kinetics, and isotherms. The findings revealed that the optimal adsorption condition of Cu<sup>2+</sup> (50 mg/L) on pHAP was pH 7, 318.15 K, the maximum adsorption capacity was 50.25 mg/g, and the adsorption capacity was superior to some adsorbents of the same type. Moreover, it can retain 74.15% of its reusability after being reused 5 times. The adsorption mechanism primarily involves monolayer adsorption through chemical processes, particularly ion exchange, coprecipitation, and complexation reactions. Therefore, pHAP has industrial application potential in the field of copper ion adsorption.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 6\",\"pages\":\"801 - 812\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00471-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00471-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Natural hydroxyapatite powder from pig-bone waste (pHAP) for the rapid adsorption of heavy metals (Cu) in aqueous solution
Copper ions are prevalent in the natural environment and possess toxicity as heavy metal ions. The removal of Cu2+ from aqueous solutions can be achieved through adsorption, which is considered a straightforward method. In this study, we employed a facile approach to synthesize pig-bone hydroxyapatite material (pHAP), and the synthesized materials were subjected to characterization using XRD, SEM, FTIR, and BET techniques. The results showed that pHAP has a pure HAP structure, and the surface of HAP has a certain porosity, which provides good conditions for the adsorption of copper ions. Batch adsorption equilibrium experiments were conducted to investigate the various influencing factors, adsorption kinetics, and isotherms. The findings revealed that the optimal adsorption condition of Cu2+ (50 mg/L) on pHAP was pH 7, 318.15 K, the maximum adsorption capacity was 50.25 mg/g, and the adsorption capacity was superior to some adsorbents of the same type. Moreover, it can retain 74.15% of its reusability after being reused 5 times. The adsorption mechanism primarily involves monolayer adsorption through chemical processes, particularly ion exchange, coprecipitation, and complexation reactions. Therefore, pHAP has industrial application potential in the field of copper ion adsorption.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.