{"title":"以风险知情的目标辐射防护方法取代线性无阈值模型。","authors":"Rodican P Reed","doi":"10.1097/hp.0000000000001803","DOIUrl":null,"url":null,"abstract":"The linear no-threshold (LNT) model may be useful as a simple basis for developing radiation protection regulations and standards, but it bears little resemblance to scientific reality and is probably overly conservative at low doses and low dose rates. This paper is an appeal for a broader view of radiation protection that involves more than just optimization of radiation dose. It is suggested that the LNT model should be replaced with a risk-informed, targeted approach to limitation of overall risks, which include radiation and other types of risks and accidents/incidents. The focus should be on protection of the individual. Limitation of overall risk does not necessarily always equate to minimization of individual or collective doses, but in some cases it might. Instead, risk assessment (hazards analysis) should be performed for each facility/and or specific job or operation (straightforward for specialized work such as radiography), and this should guide how limited resources are used to protect workers and the public. A graded approach could be used to prioritize the most significant risks and identify exposure scenarios that are unlikely or non-existent. The dose limits would then represent an acceptable level of risk, below which no further reduction in dose would be needed. Less resources should be spent on ALARA and tracking small individual and collective doses. Present dose limits are thought to be conservative and should suffice in general. Two exceptions are possibly the need for a lower (lifetime) dose limit for lens of the eye for astronauts and raising the public limit to 5 mSv y-1 from 1 mSv y-1. This would harmonize the public limit with the current limit for the embryo fetus of the declared pregnant worker. Eight case studies are presented that emphasize how diverse and complex radiation risks can be, and in some cases, chemical and industrial risks outweigh radiation risks. More focus is needed on prevention of accidents and incidents involving a variety of types of risks. A targeted approach is needed, commitments should be complied with until they are changed or exemptions are granted. No criticism of regulators or nuclear industry personnel is intended here. Protection of workers and the public is everyone's goal. The question is how best to accomplish that.","PeriodicalId":12976,"journal":{"name":"Health physics","volume":"16 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Replace the Linear No-threshold Model with a Risk-informed Targeted Approach to Radiation Protection.\",\"authors\":\"Rodican P Reed\",\"doi\":\"10.1097/hp.0000000000001803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear no-threshold (LNT) model may be useful as a simple basis for developing radiation protection regulations and standards, but it bears little resemblance to scientific reality and is probably overly conservative at low doses and low dose rates. This paper is an appeal for a broader view of radiation protection that involves more than just optimization of radiation dose. It is suggested that the LNT model should be replaced with a risk-informed, targeted approach to limitation of overall risks, which include radiation and other types of risks and accidents/incidents. The focus should be on protection of the individual. Limitation of overall risk does not necessarily always equate to minimization of individual or collective doses, but in some cases it might. Instead, risk assessment (hazards analysis) should be performed for each facility/and or specific job or operation (straightforward for specialized work such as radiography), and this should guide how limited resources are used to protect workers and the public. A graded approach could be used to prioritize the most significant risks and identify exposure scenarios that are unlikely or non-existent. The dose limits would then represent an acceptable level of risk, below which no further reduction in dose would be needed. Less resources should be spent on ALARA and tracking small individual and collective doses. Present dose limits are thought to be conservative and should suffice in general. Two exceptions are possibly the need for a lower (lifetime) dose limit for lens of the eye for astronauts and raising the public limit to 5 mSv y-1 from 1 mSv y-1. This would harmonize the public limit with the current limit for the embryo fetus of the declared pregnant worker. Eight case studies are presented that emphasize how diverse and complex radiation risks can be, and in some cases, chemical and industrial risks outweigh radiation risks. More focus is needed on prevention of accidents and incidents involving a variety of types of risks. A targeted approach is needed, commitments should be complied with until they are changed or exemptions are granted. No criticism of regulators or nuclear industry personnel is intended here. Protection of workers and the public is everyone's goal. The question is how best to accomplish that.\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/hp.0000000000001803\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/hp.0000000000001803","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Replace the Linear No-threshold Model with a Risk-informed Targeted Approach to Radiation Protection.
The linear no-threshold (LNT) model may be useful as a simple basis for developing radiation protection regulations and standards, but it bears little resemblance to scientific reality and is probably overly conservative at low doses and low dose rates. This paper is an appeal for a broader view of radiation protection that involves more than just optimization of radiation dose. It is suggested that the LNT model should be replaced with a risk-informed, targeted approach to limitation of overall risks, which include radiation and other types of risks and accidents/incidents. The focus should be on protection of the individual. Limitation of overall risk does not necessarily always equate to minimization of individual or collective doses, but in some cases it might. Instead, risk assessment (hazards analysis) should be performed for each facility/and or specific job or operation (straightforward for specialized work such as radiography), and this should guide how limited resources are used to protect workers and the public. A graded approach could be used to prioritize the most significant risks and identify exposure scenarios that are unlikely or non-existent. The dose limits would then represent an acceptable level of risk, below which no further reduction in dose would be needed. Less resources should be spent on ALARA and tracking small individual and collective doses. Present dose limits are thought to be conservative and should suffice in general. Two exceptions are possibly the need for a lower (lifetime) dose limit for lens of the eye for astronauts and raising the public limit to 5 mSv y-1 from 1 mSv y-1. This would harmonize the public limit with the current limit for the embryo fetus of the declared pregnant worker. Eight case studies are presented that emphasize how diverse and complex radiation risks can be, and in some cases, chemical and industrial risks outweigh radiation risks. More focus is needed on prevention of accidents and incidents involving a variety of types of risks. A targeted approach is needed, commitments should be complied with until they are changed or exemptions are granted. No criticism of regulators or nuclear industry personnel is intended here. Protection of workers and the public is everyone's goal. The question is how best to accomplish that.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.