印度中部构造带(CITZ)Tirodi片麻岩复合体的地球化学特征和锆石U-Pb地质年代:岩石成因、新生代地壳演化和构造背景的约束条件

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Mukesh K. Mishra, Meraj Alam, Tatiana V. Kaulina, Talat Ahmad
{"title":"印度中部构造带(CITZ)Tirodi片麻岩复合体的地球化学特征和锆石U-Pb地质年代:岩石成因、新生代地壳演化和构造背景的约束条件","authors":"Mukesh K. Mishra,&nbsp;Meraj Alam,&nbsp;Tatiana V. Kaulina,&nbsp;Talat Ahmad","doi":"10.1007/s00710-024-00853-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Tirodi Gneissic Complex (TGC) represents the basement sequence of the Central Indian Tectonic Zone (CITZ), underlying the Proterozoic supracrustal sequences of the Sausar and Betul Groups of rocks. Lithologically, the TGC constitutes a combination of pink and grey granitic gneiss assemblages, characterised by biotite-rich, hornblende-biotite-rich, and muscovite-biotite-rich granite gneiss. Compositionally, the TGC granitoids represent tonalite-trondhjemite-granodiorite to granite, and have calc-alkaline lineage with metaluminous to peraluminous characteristics. Geochemically, they dominantly belong to A2-type granitoids. Chondrite normalised REE ratios of La/Sm, La/Yb, La/Gd, and Gd/Yb indicate diverse LREE/HREE enrichment. Multi-element patterns for the TGC granitoids are characterised by light rare earth elements (LREE) and large ion lithophile elements (LILE) enrichment and depletion of high field strength elements (HFSE: Nb, P, and Ti) and strong positive Pb and Th anomalies. The observed negative anomalies for HFSE are attributed to diverse crustal/lithospheric sources, with some influence from K-feldspar, plagioclase and Ti-oxide fractionation. Sm–Nd data presents initial <sup>143</sup>Nd/<sup>144</sup>Nd (t = 1.7 Ga) ratios (0.509898 to 0.510508), and ε<sub>Nd</sub> (t = 1.7 Ga) is (+ 0.58 to -10.59), with T<sub>DM</sub> model ages ranging from 2.11 to 2.95 Ga. Such a wide range of ε<sub>Nd</sub> (t = 1.7 Ga), indicates heterogeneous crustal/lithosphere sources, which have probably experienced longer crustal residence times. Zircon U–Pb ages for individual TGC samples are 1506 ± 11 Ma (TG-01), 1534 ± 26 Ma (MU-5), 1675 ± 9 Ma (BT-4), 1724 ± 11 Ma (BT-3), 1730 ± 13 Ma (BT-4), and 1960 ± 2 Ga (Ms-2), respectively. These ages have probably recorded the key periods of the Columbia supercontinent's assembly, growth, and breakup. Geochemical and geochronological results suggest that the TGC granitoids have a crustal/lithospheric origin and are formed by partial melting of felsic sources in dominantly VAG (volcanic arc granite) and, to some extents, WPG (within-plate granite) settings.</p></div>","PeriodicalId":18547,"journal":{"name":"Mineralogy and Petrology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geochemical characterization and zircon U–Pb geochronology of the Tirodi Gneissic Complex, Central Indian Tectonic Zone (CITZ): constraints on petrogenesis, Proterozoic crustal evolution and tectonic setting\",\"authors\":\"Mukesh K. Mishra,&nbsp;Meraj Alam,&nbsp;Tatiana V. Kaulina,&nbsp;Talat Ahmad\",\"doi\":\"10.1007/s00710-024-00853-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Tirodi Gneissic Complex (TGC) represents the basement sequence of the Central Indian Tectonic Zone (CITZ), underlying the Proterozoic supracrustal sequences of the Sausar and Betul Groups of rocks. Lithologically, the TGC constitutes a combination of pink and grey granitic gneiss assemblages, characterised by biotite-rich, hornblende-biotite-rich, and muscovite-biotite-rich granite gneiss. Compositionally, the TGC granitoids represent tonalite-trondhjemite-granodiorite to granite, and have calc-alkaline lineage with metaluminous to peraluminous characteristics. Geochemically, they dominantly belong to A2-type granitoids. Chondrite normalised REE ratios of La/Sm, La/Yb, La/Gd, and Gd/Yb indicate diverse LREE/HREE enrichment. Multi-element patterns for the TGC granitoids are characterised by light rare earth elements (LREE) and large ion lithophile elements (LILE) enrichment and depletion of high field strength elements (HFSE: Nb, P, and Ti) and strong positive Pb and Th anomalies. The observed negative anomalies for HFSE are attributed to diverse crustal/lithospheric sources, with some influence from K-feldspar, plagioclase and Ti-oxide fractionation. Sm–Nd data presents initial <sup>143</sup>Nd/<sup>144</sup>Nd (t = 1.7 Ga) ratios (0.509898 to 0.510508), and ε<sub>Nd</sub> (t = 1.7 Ga) is (+ 0.58 to -10.59), with T<sub>DM</sub> model ages ranging from 2.11 to 2.95 Ga. Such a wide range of ε<sub>Nd</sub> (t = 1.7 Ga), indicates heterogeneous crustal/lithosphere sources, which have probably experienced longer crustal residence times. Zircon U–Pb ages for individual TGC samples are 1506 ± 11 Ma (TG-01), 1534 ± 26 Ma (MU-5), 1675 ± 9 Ma (BT-4), 1724 ± 11 Ma (BT-3), 1730 ± 13 Ma (BT-4), and 1960 ± 2 Ga (Ms-2), respectively. These ages have probably recorded the key periods of the Columbia supercontinent's assembly, growth, and breakup. Geochemical and geochronological results suggest that the TGC granitoids have a crustal/lithospheric origin and are formed by partial melting of felsic sources in dominantly VAG (volcanic arc granite) and, to some extents, WPG (within-plate granite) settings.</p></div>\",\"PeriodicalId\":18547,\"journal\":{\"name\":\"Mineralogy and Petrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00710-024-00853-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00710-024-00853-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

蒂罗迪片麻岩群(TGC)是中印度构造带(CITZ)的基底序列,位于索萨组(Sausar)和贝图尔组(Betul)岩石的新生代超壳序列之下。从岩性上看,大峡谷花岗片麻岩由粉红色和灰色花岗片麻岩组合而成,富含生物岩、角闪石-生物岩和麝香石-生物岩-花岗片麻岩。从成分上看,TGC 花岗岩代表了黑云母-透辉石-花岗闪长岩到花岗岩,具有钙碱性线和金属铝至过铝特征。从地球化学角度看,它们主要属于A2型花岗岩。软玉的La/Sm、La/Yb、La/Gd和Gd/Yb的归一化REE比率显示了不同的LREE/HREE富集。TGC花岗岩的多元素模式具有轻稀土元素(LREE)和大离子亲岩元素(LILE)富集和高场强元素(HFSE:Nb、P和Ti)贫化的特征,以及强烈的正Pb和Th异常。观测到的高场强元素负异常归因于不同的地壳/岩石圈来源,并受到 K 长石、斜长石和氧化钛分馏的一些影响。Sm-Nd数据显示初始143Nd/144Nd(t = 1.7 Ga)比值为(0.509898至0.510508),εNd(t = 1.7 Ga)为(+ 0.58至-10.59),TDM模型年龄为2.11至2.95 Ga。如此大范围的εNd (t = 1.7 Ga),表明地壳/岩石圈的来源是异质的,可能经历了较长的地壳停留时间。个别TGC样品的锆石U-Pb年龄分别为1506 ± 11 Ma (TG-01)、1534 ± 26 Ma (MU-5)、1675 ± 9 Ma (BT-4)、1724 ± 11 Ma (BT-3)、1730 ± 13 Ma (BT-4)和1960 ± 2 Ga (Ms-2)。这些年龄很可能记录了哥伦比亚超大陆组装、成长和分裂的关键时期。地球化学和地质年代结果表明,TGC花岗岩起源于地壳/岩石圈,是由主要为VAG(火山弧花岗岩)以及在一定程度上为WPG(板内花岗岩)环境中的长英岩源部分熔融形成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geochemical characterization and zircon U–Pb geochronology of the Tirodi Gneissic Complex, Central Indian Tectonic Zone (CITZ): constraints on petrogenesis, Proterozoic crustal evolution and tectonic setting

Geochemical characterization and zircon U–Pb geochronology of the Tirodi Gneissic Complex, Central Indian Tectonic Zone (CITZ): constraints on petrogenesis, Proterozoic crustal evolution and tectonic setting

Geochemical characterization and zircon U–Pb geochronology of the Tirodi Gneissic Complex, Central Indian Tectonic Zone (CITZ): constraints on petrogenesis, Proterozoic crustal evolution and tectonic setting

The Tirodi Gneissic Complex (TGC) represents the basement sequence of the Central Indian Tectonic Zone (CITZ), underlying the Proterozoic supracrustal sequences of the Sausar and Betul Groups of rocks. Lithologically, the TGC constitutes a combination of pink and grey granitic gneiss assemblages, characterised by biotite-rich, hornblende-biotite-rich, and muscovite-biotite-rich granite gneiss. Compositionally, the TGC granitoids represent tonalite-trondhjemite-granodiorite to granite, and have calc-alkaline lineage with metaluminous to peraluminous characteristics. Geochemically, they dominantly belong to A2-type granitoids. Chondrite normalised REE ratios of La/Sm, La/Yb, La/Gd, and Gd/Yb indicate diverse LREE/HREE enrichment. Multi-element patterns for the TGC granitoids are characterised by light rare earth elements (LREE) and large ion lithophile elements (LILE) enrichment and depletion of high field strength elements (HFSE: Nb, P, and Ti) and strong positive Pb and Th anomalies. The observed negative anomalies for HFSE are attributed to diverse crustal/lithospheric sources, with some influence from K-feldspar, plagioclase and Ti-oxide fractionation. Sm–Nd data presents initial 143Nd/144Nd (t = 1.7 Ga) ratios (0.509898 to 0.510508), and εNd (t = 1.7 Ga) is (+ 0.58 to -10.59), with TDM model ages ranging from 2.11 to 2.95 Ga. Such a wide range of εNd (t = 1.7 Ga), indicates heterogeneous crustal/lithosphere sources, which have probably experienced longer crustal residence times. Zircon U–Pb ages for individual TGC samples are 1506 ± 11 Ma (TG-01), 1534 ± 26 Ma (MU-5), 1675 ± 9 Ma (BT-4), 1724 ± 11 Ma (BT-3), 1730 ± 13 Ma (BT-4), and 1960 ± 2 Ga (Ms-2), respectively. These ages have probably recorded the key periods of the Columbia supercontinent's assembly, growth, and breakup. Geochemical and geochronological results suggest that the TGC granitoids have a crustal/lithospheric origin and are formed by partial melting of felsic sources in dominantly VAG (volcanic arc granite) and, to some extents, WPG (within-plate granite) settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mineralogy and Petrology
Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Mineralogy and Petrology welcomes manuscripts from the classical fields of mineralogy, igneous and metamorphic petrology, geochemistry, crystallography, as well as their applications in academic experimentation and research, materials science and engineering, for technology, industry, environment, or society. The journal strongly promotes cross-fertilization among Earth-scientific and applied materials-oriented disciplines. Purely descriptive manuscripts on regional topics will not be considered. Mineralogy and Petrology was founded in 1872 by Gustav Tschermak as "Mineralogische und Petrographische Mittheilungen". It is one of Europe''s oldest geoscience journals. Former editors include outstanding names such as Gustav Tschermak, Friedrich Becke, Felix Machatschki, Josef Zemann, and Eugen F. Stumpfl.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信