高维布辛斯克方程的角行波

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Amin Esfahani
{"title":"高维布辛斯克方程的角行波","authors":"Amin Esfahani","doi":"10.1111/sapm.12690","DOIUrl":null,"url":null,"abstract":"<p>This paper studies traveling waves with nonzero wave speed (angular traveling waves) of the high-dimensional Boussinesq equation that have not been studied before. We analyze the properties of these waves and demonstrate that, unlike the unique stationary solution, they lack positivity, radial symmetry, and exponential decay. By employing variational and geometric approaches, along with perturbation theory, we establish the orbital (in)stability and strong instability of these traveling waves.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angular traveling waves of the high-dimensional Boussinesq equation\",\"authors\":\"Amin Esfahani\",\"doi\":\"10.1111/sapm.12690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies traveling waves with nonzero wave speed (angular traveling waves) of the high-dimensional Boussinesq equation that have not been studied before. We analyze the properties of these waves and demonstrate that, unlike the unique stationary solution, they lack positivity, radial symmetry, and exponential decay. By employing variational and geometric approaches, along with perturbation theory, we establish the orbital (in)stability and strong instability of these traveling waves.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以前从未研究过的高维布辛斯方程的非零波速行波(角行波)。我们分析了这些波的特性,并证明它们与唯一的静止解不同,缺乏正向性、径向对称性和指数衰减。通过采用变分和几何方法以及扰动理论,我们确定了这些行波的轨道(不)稳定性和强不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Angular traveling waves of the high-dimensional Boussinesq equation

This paper studies traveling waves with nonzero wave speed (angular traveling waves) of the high-dimensional Boussinesq equation that have not been studied before. We analyze the properties of these waves and demonstrate that, unlike the unique stationary solution, they lack positivity, radial symmetry, and exponential decay. By employing variational and geometric approaches, along with perturbation theory, we establish the orbital (in)stability and strong instability of these traveling waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信