1+2)维精细科尔莫哥罗夫逆向方程的扩展对称性分析

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Serhii D. Koval, Roman O. Popovych
{"title":"1+2)维精细科尔莫哥罗夫逆向方程的扩展对称性分析","authors":"Serhii D. Koval,&nbsp;Roman O. Popovych","doi":"10.1111/sapm.12695","DOIUrl":null,"url":null,"abstract":"<p>Within the class of (1+2)-dimensional ultraparabolic linear equations, we distinguish a fine Kolmogorov backward equation with a quadratic diffusivity. Modulo the point equivalence, it is a unique equation within the class whose essential Lie invariance algebra is five-dimensional and nonsolvable. Using the direct method, we compute the point symmetry pseudogroup of this equation and analyze its structure. In particular, we single out its essential subgroup and classify its discrete elements. We exhaustively classify all subalgebras of the corresponding essential Lie invariance algebra up to inner automorphisms and up to the action of the essential point-symmetry group. This allowed us to classify Lie reductions and Lie invariant solutions of the equation under consideration. We also discuss the generation of its solutions using point and linear generalized symmetries and carry out its peculiar generalized reductions. As a result, we construct wide families of its solutions parameterized by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation  or one or two arbitrary solutions of (1+1)-dimensional linear heat equations with inverse square potentials.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation\",\"authors\":\"Serhii D. Koval,&nbsp;Roman O. Popovych\",\"doi\":\"10.1111/sapm.12695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Within the class of (1+2)-dimensional ultraparabolic linear equations, we distinguish a fine Kolmogorov backward equation with a quadratic diffusivity. Modulo the point equivalence, it is a unique equation within the class whose essential Lie invariance algebra is five-dimensional and nonsolvable. Using the direct method, we compute the point symmetry pseudogroup of this equation and analyze its structure. In particular, we single out its essential subgroup and classify its discrete elements. We exhaustively classify all subalgebras of the corresponding essential Lie invariance algebra up to inner automorphisms and up to the action of the essential point-symmetry group. This allowed us to classify Lie reductions and Lie invariant solutions of the equation under consideration. We also discuss the generation of its solutions using point and linear generalized symmetries and carry out its peculiar generalized reductions. As a result, we construct wide families of its solutions parameterized by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation  or one or two arbitrary solutions of (1+1)-dimensional linear heat equations with inverse square potentials.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在 (1+2)-dimensional ultraparabolic 线性方程中,我们发现了一个具有二次扩散性的精细柯尔莫哥洛夫后向方程。以点等价为模数,它是该类中唯一一个本质列不变性代数为五维且不可解的方程。我们用直接法计算了这个方程的点对称伪群,并分析了它的结构。特别是,我们找出了它的基本子群,并对其离散元素进行了分类。我们详尽地分类了相应的本质烈不变性代数的所有子代数,直到内自动态和本质点对称群的作用。这样,我们就能对所考虑方程的 Lie 还原和 Lie 不变解进行分类。我们还讨论了利用点对称和线性广义对称生成解的问题,并进行了奇特的广义还原。因此,我们构建了由 (1+1)-dimensional 线性热方程的任意有限数量的任意解或带有反平方势的 (1+1)-dimensional 线性热方程的一个或两个任意解参数化的广泛解族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation

Within the class of (1+2)-dimensional ultraparabolic linear equations, we distinguish a fine Kolmogorov backward equation with a quadratic diffusivity. Modulo the point equivalence, it is a unique equation within the class whose essential Lie invariance algebra is five-dimensional and nonsolvable. Using the direct method, we compute the point symmetry pseudogroup of this equation and analyze its structure. In particular, we single out its essential subgroup and classify its discrete elements. We exhaustively classify all subalgebras of the corresponding essential Lie invariance algebra up to inner automorphisms and up to the action of the essential point-symmetry group. This allowed us to classify Lie reductions and Lie invariant solutions of the equation under consideration. We also discuss the generation of its solutions using point and linear generalized symmetries and carry out its peculiar generalized reductions. As a result, we construct wide families of its solutions parameterized by an arbitrary finite number of arbitrary solutions of the (1+1)-dimensional linear heat equation  or one or two arbitrary solutions of (1+1)-dimensional linear heat equations with inverse square potentials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信