Qiunan Xie, Xiaohan Li, Jieying Lin, Feiyu Zhu, Jingcheng Liu, Xiaojie Li, Wei Wei
求助PDF
{"title":"用于环氧树脂阻燃改性的含硅环三磷嗪衍生物的合成","authors":"Qiunan Xie, Xiaohan Li, Jieying Lin, Feiyu Zhu, Jingcheng Liu, Xiaojie Li, Wei Wei","doi":"10.1002/pi.6640","DOIUrl":null,"url":null,"abstract":"<p>Although epoxy resin (EP) has been widely used in many fields, it is still urgent to effectively improve its flame retardancy by halogen-free strategies. Herein, a silicon-containing cyclotriphosphazene derivative (HEP-Si) was synthesized by nucleophilic substitution and silicon–hydrogen addition reaction using eugenol, hexachlorophosphazene and triethylsilane as raw materials. Then it served as a halogen-free flame retardant for an EP/4,4′-diaminodiphenylmethane system, and its performance was compared with that of commercial flame retardant hexaphenoxycyclotriphosphazene (HPP). The results showed that although the initial thermal decomposition temperature (<i>T</i><sub>5%</sub>) of the cured products of EP/HEP-Si was slightly lower than that of pure EP, <i>T</i><sub>5%</sub> did not decrease further as the amount of HEP-Si increased, indicating that good thermal stability was maintained. In addition, the char yield of the cured products of EP/HEP-Si was significantly increased (more than 20 wt%) compared to that of pure EP. The cured EP with the addition of HPP and HEP-Si both achieved a V-0 rating in UL-94 vertical burning test at 0.5 wt% phosphorus content, while the limiting oxygen index of the EP/HEP-Si system was higher, reaching 33.2%. From cone calorimetric test results, the peak heat release rate, total heat release and total smoke production of the cured products of EP/HEP-Si decreased by 61.5%, 37.1% and 26.2%, respectively, compared with that of pure EP. The cured EP/HEP-Si materials also exhibited good thermomechanical and mechanical properties. Therefore, HEP-Si is suggested to be a promising P/N/Si-containing halogen-free flame retardant for EP. © 2024 Society of Industrial Chemistry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 9","pages":"705-718"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of a silicon-containing cyclotriphosphazene derivative for flame-retardant modification of epoxy resin\",\"authors\":\"Qiunan Xie, Xiaohan Li, Jieying Lin, Feiyu Zhu, Jingcheng Liu, Xiaojie Li, Wei Wei\",\"doi\":\"10.1002/pi.6640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although epoxy resin (EP) has been widely used in many fields, it is still urgent to effectively improve its flame retardancy by halogen-free strategies. Herein, a silicon-containing cyclotriphosphazene derivative (HEP-Si) was synthesized by nucleophilic substitution and silicon–hydrogen addition reaction using eugenol, hexachlorophosphazene and triethylsilane as raw materials. Then it served as a halogen-free flame retardant for an EP/4,4′-diaminodiphenylmethane system, and its performance was compared with that of commercial flame retardant hexaphenoxycyclotriphosphazene (HPP). The results showed that although the initial thermal decomposition temperature (<i>T</i><sub>5%</sub>) of the cured products of EP/HEP-Si was slightly lower than that of pure EP, <i>T</i><sub>5%</sub> did not decrease further as the amount of HEP-Si increased, indicating that good thermal stability was maintained. In addition, the char yield of the cured products of EP/HEP-Si was significantly increased (more than 20 wt%) compared to that of pure EP. The cured EP with the addition of HPP and HEP-Si both achieved a V-0 rating in UL-94 vertical burning test at 0.5 wt% phosphorus content, while the limiting oxygen index of the EP/HEP-Si system was higher, reaching 33.2%. From cone calorimetric test results, the peak heat release rate, total heat release and total smoke production of the cured products of EP/HEP-Si decreased by 61.5%, 37.1% and 26.2%, respectively, compared with that of pure EP. The cured EP/HEP-Si materials also exhibited good thermomechanical and mechanical properties. Therefore, HEP-Si is suggested to be a promising P/N/Si-containing halogen-free flame retardant for EP. © 2024 Society of Industrial Chemistry.</p>\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":\"73 9\",\"pages\":\"705-718\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pi.6640\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6640","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用