Mark Daniel Alea;Ali Safa;Flavio Giacomozzi;Andrea Adami;Inci Rüya Temel;Maria Atalaia Rosa;Leandro Lorenzelli;Georges Gielen
{"title":"模拟指尖的 12×16 200μm 分辨率电子皮肤 Taxel 读出芯片,具有每个 Taxel 的尖峰读出和嵌入式感受场处理功能","authors":"Mark Daniel Alea;Ali Safa;Flavio Giacomozzi;Andrea Adami;Inci Rüya Temel;Maria Atalaia Rosa;Leandro Lorenzelli;Georges Gielen","doi":"10.1109/TBCAS.2024.3387545","DOIUrl":null,"url":null,"abstract":"This paper presents an electronic skin (\n<italic>e</i>\n-skin) taxel array readout chip in 0.18\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nm CMOS technology, achieving the highest reported spatial resolution of 200\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nm, comparable to human fingertips. A key innovation is the integration on chip of a 12\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n16 polyvinylidene fluoride (PVDF)-based piezoelectric sensor array with per-taxel signal conditioning frontend and spiking readout combined with local embedded neuromorphic first-order processing through Complex Receptive Fields (CRFs). Experimental results show that Spiking Neural Network (SNN)-based classification of the chip's spatiotemporal spiking output for input tactile stimuli such as texture and flutter frequency achieves excellent accuracies up to 97.1\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n and 99.2\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n, respectively. SNN-based classification of the indentation period applied to the on-chip PVDF sensors achieved 95.5\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n classification accuracy, despite using only a small 256-neuron SNN classifier, a low equivalent spike encoding resolution of 3-5 bits, and a sub-Nyquist 2.2kevent/s population spiking rate, a state-of-the-art power consumption of 12.33nW per-taxel, and 75\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nW-5mW for the entire chip is obtained. Finally, a comparison of the texture classification accuracies between two on-chip spike encoder outputs shows that the proposed neuromorphic level-crossing sampling (N-LCS) architecture with a decaying threshold outperforms the conventional bipolar level-crossing sampling (LCS) architecture with fixed threshold.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1308-1320"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fingertip-Mimicking 12$\\\\times$16 200 $\\\\mu$m-Resolution e-Skin Taxel Readout Chip With Per-Taxel Spiking Readout and Embedded Receptive Field Processing\",\"authors\":\"Mark Daniel Alea;Ali Safa;Flavio Giacomozzi;Andrea Adami;Inci Rüya Temel;Maria Atalaia Rosa;Leandro Lorenzelli;Georges Gielen\",\"doi\":\"10.1109/TBCAS.2024.3387545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an electronic skin (\\n<italic>e</i>\\n-skin) taxel array readout chip in 0.18\\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nm CMOS technology, achieving the highest reported spatial resolution of 200\\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nm, comparable to human fingertips. A key innovation is the integration on chip of a 12\\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n16 polyvinylidene fluoride (PVDF)-based piezoelectric sensor array with per-taxel signal conditioning frontend and spiking readout combined with local embedded neuromorphic first-order processing through Complex Receptive Fields (CRFs). Experimental results show that Spiking Neural Network (SNN)-based classification of the chip's spatiotemporal spiking output for input tactile stimuli such as texture and flutter frequency achieves excellent accuracies up to 97.1\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n and 99.2\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n, respectively. SNN-based classification of the indentation period applied to the on-chip PVDF sensors achieved 95.5\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n classification accuracy, despite using only a small 256-neuron SNN classifier, a low equivalent spike encoding resolution of 3-5 bits, and a sub-Nyquist 2.2kevent/s population spiking rate, a state-of-the-art power consumption of 12.33nW per-taxel, and 75\\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nW-5mW for the entire chip is obtained. Finally, a comparison of the texture classification accuracies between two on-chip spike encoder outputs shows that the proposed neuromorphic level-crossing sampling (N-LCS) architecture with a decaying threshold outperforms the conventional bipolar level-crossing sampling (LCS) architecture with fixed threshold.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"18 6\",\"pages\":\"1308-1320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10497167/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10497167/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fingertip-Mimicking 12$\times$16 200 $\mu$m-Resolution e-Skin Taxel Readout Chip With Per-Taxel Spiking Readout and Embedded Receptive Field Processing
This paper presents an electronic skin (
e
-skin) taxel array readout chip in 0.18
$\mu$
m CMOS technology, achieving the highest reported spatial resolution of 200
$\mu$
m, comparable to human fingertips. A key innovation is the integration on chip of a 12
$\times$
16 polyvinylidene fluoride (PVDF)-based piezoelectric sensor array with per-taxel signal conditioning frontend and spiking readout combined with local embedded neuromorphic first-order processing through Complex Receptive Fields (CRFs). Experimental results show that Spiking Neural Network (SNN)-based classification of the chip's spatiotemporal spiking output for input tactile stimuli such as texture and flutter frequency achieves excellent accuracies up to 97.1
$\%$
and 99.2
$\%$
, respectively. SNN-based classification of the indentation period applied to the on-chip PVDF sensors achieved 95.5
$\%$
classification accuracy, despite using only a small 256-neuron SNN classifier, a low equivalent spike encoding resolution of 3-5 bits, and a sub-Nyquist 2.2kevent/s population spiking rate, a state-of-the-art power consumption of 12.33nW per-taxel, and 75
$\mu$
W-5mW for the entire chip is obtained. Finally, a comparison of the texture classification accuracies between two on-chip spike encoder outputs shows that the proposed neuromorphic level-crossing sampling (N-LCS) architecture with a decaying threshold outperforms the conventional bipolar level-crossing sampling (LCS) architecture with fixed threshold.