模拟指尖的 12×16 200μm 分辨率电子皮肤 Taxel 读出芯片,具有每个 Taxel 的尖峰读出和嵌入式感受场处理功能

Mark Daniel Alea;Ali Safa;Flavio Giacomozzi;Andrea Adami;Inci Rüya Temel;Maria Atalaia Rosa;Leandro Lorenzelli;Georges Gielen
{"title":"模拟指尖的 12×16 200μm 分辨率电子皮肤 Taxel 读出芯片,具有每个 Taxel 的尖峰读出和嵌入式感受场处理功能","authors":"Mark Daniel Alea;Ali Safa;Flavio Giacomozzi;Andrea Adami;Inci Rüya Temel;Maria Atalaia Rosa;Leandro Lorenzelli;Georges Gielen","doi":"10.1109/TBCAS.2024.3387545","DOIUrl":null,"url":null,"abstract":"This paper presents an electronic skin (\n<italic>e</i>\n-skin) taxel array readout chip in 0.18\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nm CMOS technology, achieving the highest reported spatial resolution of 200\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nm, comparable to human fingertips. A key innovation is the integration on chip of a 12\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n16 polyvinylidene fluoride (PVDF)-based piezoelectric sensor array with per-taxel signal conditioning frontend and spiking readout combined with local embedded neuromorphic first-order processing through Complex Receptive Fields (CRFs). Experimental results show that Spiking Neural Network (SNN)-based classification of the chip's spatiotemporal spiking output for input tactile stimuli such as texture and flutter frequency achieves excellent accuracies up to 97.1\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n and 99.2\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n, respectively. SNN-based classification of the indentation period applied to the on-chip PVDF sensors achieved 95.5\n<inline-formula><tex-math>$\\%$</tex-math></inline-formula>\n classification accuracy, despite using only a small 256-neuron SNN classifier, a low equivalent spike encoding resolution of 3-5 bits, and a sub-Nyquist 2.2kevent/s population spiking rate, a state-of-the-art power consumption of 12.33nW per-taxel, and 75\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nW-5mW for the entire chip is obtained. Finally, a comparison of the texture classification accuracies between two on-chip spike encoder outputs shows that the proposed neuromorphic level-crossing sampling (N-LCS) architecture with a decaying threshold outperforms the conventional bipolar level-crossing sampling (LCS) architecture with fixed threshold.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1308-1320"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fingertip-Mimicking 12$\\\\times$16 200 $\\\\mu$m-Resolution e-Skin Taxel Readout Chip With Per-Taxel Spiking Readout and Embedded Receptive Field Processing\",\"authors\":\"Mark Daniel Alea;Ali Safa;Flavio Giacomozzi;Andrea Adami;Inci Rüya Temel;Maria Atalaia Rosa;Leandro Lorenzelli;Georges Gielen\",\"doi\":\"10.1109/TBCAS.2024.3387545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an electronic skin (\\n<italic>e</i>\\n-skin) taxel array readout chip in 0.18\\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nm CMOS technology, achieving the highest reported spatial resolution of 200\\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nm, comparable to human fingertips. A key innovation is the integration on chip of a 12\\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n16 polyvinylidene fluoride (PVDF)-based piezoelectric sensor array with per-taxel signal conditioning frontend and spiking readout combined with local embedded neuromorphic first-order processing through Complex Receptive Fields (CRFs). Experimental results show that Spiking Neural Network (SNN)-based classification of the chip's spatiotemporal spiking output for input tactile stimuli such as texture and flutter frequency achieves excellent accuracies up to 97.1\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n and 99.2\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n, respectively. SNN-based classification of the indentation period applied to the on-chip PVDF sensors achieved 95.5\\n<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula>\\n classification accuracy, despite using only a small 256-neuron SNN classifier, a low equivalent spike encoding resolution of 3-5 bits, and a sub-Nyquist 2.2kevent/s population spiking rate, a state-of-the-art power consumption of 12.33nW per-taxel, and 75\\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nW-5mW for the entire chip is obtained. Finally, a comparison of the texture classification accuracies between two on-chip spike encoder outputs shows that the proposed neuromorphic level-crossing sampling (N-LCS) architecture with a decaying threshold outperforms the conventional bipolar level-crossing sampling (LCS) architecture with fixed threshold.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"18 6\",\"pages\":\"1308-1320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10497167/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10497167/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种采用0.18$\mu$m CMOS技术的电子皮肤(e-skin) taxel阵列读出芯片,实现了目前报道的最高空间分辨率200$\mu$m,与人类指尖相当。一个关键的创新是在芯片上集成了一个基于12美元× 16美元聚偏氟乙烯(PVDF)的压电传感器阵列,该传感器阵列具有单单元信号调理前端和峰值读出,并通过复杂感受场(CRFs)结合局部嵌入式神经形态一阶处理。实验结果表明,基于尖峰神经网络(SNN)的芯片对输入触觉刺激(如纹理和颤振频率)的时空尖峰输出进行分类,准确率分别高达97.1美元和99.2美元。应用于片上PVDF传感器的基于SNN的缩进周期分类实现了95.5%的分类准确率,尽管只使用了一个较小的256个神经元SNN分类器,3-5位的低等效尖峰编码分辨率,亚奈奎斯特2.2kevent/s的种群尖峰率,最先进的功耗为12.33nW / taxel,整个芯片的功耗为75$\mu$W-5mW。最后,对两个片上尖峰编码器输出的纹理分类精度进行了比较,结果表明,具有衰减阈值的神经形态交叉采样(N-LCS)结构优于具有固定阈值的传统双极交叉采样(LCS)结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fingertip-Mimicking 12$\times$16 200 $\mu$m-Resolution e-Skin Taxel Readout Chip With Per-Taxel Spiking Readout and Embedded Receptive Field Processing
This paper presents an electronic skin ( e -skin) taxel array readout chip in 0.18 $\mu$ m CMOS technology, achieving the highest reported spatial resolution of 200 $\mu$ m, comparable to human fingertips. A key innovation is the integration on chip of a 12 $\times$ 16 polyvinylidene fluoride (PVDF)-based piezoelectric sensor array with per-taxel signal conditioning frontend and spiking readout combined with local embedded neuromorphic first-order processing through Complex Receptive Fields (CRFs). Experimental results show that Spiking Neural Network (SNN)-based classification of the chip's spatiotemporal spiking output for input tactile stimuli such as texture and flutter frequency achieves excellent accuracies up to 97.1 $\%$ and 99.2 $\%$ , respectively. SNN-based classification of the indentation period applied to the on-chip PVDF sensors achieved 95.5 $\%$ classification accuracy, despite using only a small 256-neuron SNN classifier, a low equivalent spike encoding resolution of 3-5 bits, and a sub-Nyquist 2.2kevent/s population spiking rate, a state-of-the-art power consumption of 12.33nW per-taxel, and 75 $\mu$ W-5mW for the entire chip is obtained. Finally, a comparison of the texture classification accuracies between two on-chip spike encoder outputs shows that the proposed neuromorphic level-crossing sampling (N-LCS) architecture with a decaying threshold outperforms the conventional bipolar level-crossing sampling (LCS) architecture with fixed threshold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信