{"title":"一类转化联合量化时间序列模型在健康研究中的应用","authors":"Fahimeh Tourani-Farani, Zeynab Aghabazaz, Iraj Kazemi","doi":"10.1007/s00180-024-01484-3","DOIUrl":null,"url":null,"abstract":"<p>Extensions of quantile regression modeling for time series analysis are extensively employed in medical and health studies. This study introduces a specific class of transformed quantile-dispersion regression models for non-stationary time series. These models possess the flexibility to incorporate the time-varying structure into the model specification, enabling precise predictions for future decisions. Our proposed modeling methodology applies to dynamic processes characterized by high variation and possible periodicity, relying on a non-linear framework. Additionally, unlike the transformed time series model, our approach directly interprets the regression parameters concerning the initial response. For computational purposes, we present an iteratively reweighted least squares algorithm. To assess the performance of our model, we conduct simulation experiments. To illustrate the modeling strategy, we analyze time-series measurements of influenza infection and daily COVID-19 deaths.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of transformed joint quantile time series models with applications to health studies\",\"authors\":\"Fahimeh Tourani-Farani, Zeynab Aghabazaz, Iraj Kazemi\",\"doi\":\"10.1007/s00180-024-01484-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extensions of quantile regression modeling for time series analysis are extensively employed in medical and health studies. This study introduces a specific class of transformed quantile-dispersion regression models for non-stationary time series. These models possess the flexibility to incorporate the time-varying structure into the model specification, enabling precise predictions for future decisions. Our proposed modeling methodology applies to dynamic processes characterized by high variation and possible periodicity, relying on a non-linear framework. Additionally, unlike the transformed time series model, our approach directly interprets the regression parameters concerning the initial response. For computational purposes, we present an iteratively reweighted least squares algorithm. To assess the performance of our model, we conduct simulation experiments. To illustrate the modeling strategy, we analyze time-series measurements of influenza infection and daily COVID-19 deaths.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01484-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01484-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A class of transformed joint quantile time series models with applications to health studies
Extensions of quantile regression modeling for time series analysis are extensively employed in medical and health studies. This study introduces a specific class of transformed quantile-dispersion regression models for non-stationary time series. These models possess the flexibility to incorporate the time-varying structure into the model specification, enabling precise predictions for future decisions. Our proposed modeling methodology applies to dynamic processes characterized by high variation and possible periodicity, relying on a non-linear framework. Additionally, unlike the transformed time series model, our approach directly interprets the regression parameters concerning the initial response. For computational purposes, we present an iteratively reweighted least squares algorithm. To assess the performance of our model, we conduct simulation experiments. To illustrate the modeling strategy, we analyze time-series measurements of influenza infection and daily COVID-19 deaths.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.