Zidong Lin, Hongfeng Liu, Kai Tang, Yidai Liu, Liangyu Che, Xinyue Long, Xiangyu Wang, Yu-ang Fan, Keyi Huang, Xiaodong Yang, Tao Xin, Xinfang Nie, Dawei Lu
{"title":"用于医学图像识别的硬件高效量子主成分分析","authors":"Zidong Lin, Hongfeng Liu, Kai Tang, Yidai Liu, Liangyu Che, Xinyue Long, Xiangyu Wang, Yu-ang Fan, Keyi Huang, Xiaodong Yang, Tao Xin, Xinfang Nie, Dawei Lu","doi":"10.1007/s11467-024-1391-x","DOIUrl":null,"url":null,"abstract":"<div><p>Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [<i>Nat. Phys.</i> 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 5","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware-efficient quantum principal component analysis for medical image recognition\",\"authors\":\"Zidong Lin, Hongfeng Liu, Kai Tang, Yidai Liu, Liangyu Che, Xinyue Long, Xiangyu Wang, Yu-ang Fan, Keyi Huang, Xiaodong Yang, Tao Xin, Xinfang Nie, Dawei Lu\",\"doi\":\"10.1007/s11467-024-1391-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [<i>Nat. Phys.</i> 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":573,\"journal\":{\"name\":\"Frontiers of Physics\",\"volume\":\"19 5\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11467-024-1391-x\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-024-1391-x","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Hardware-efficient quantum principal component analysis for medical image recognition
Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [Nat. Phys. 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.