Giyu Usuki, Takako Ishiga, Nanami Sakata, Yasuhiro Ishiga
{"title":"丁香假单胞菌 pv. actinidiae 生物变种 3 的鞭毛运动有助于细菌通过气孔进行感染","authors":"Giyu Usuki, Takako Ishiga, Nanami Sakata, Yasuhiro Ishiga","doi":"10.1007/s10327-024-01172-6","DOIUrl":null,"url":null,"abstract":"<p>Highly virulent <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> biovar 3 (Psa3) causes kiwifruit bacterial canker, which seriously damages kiwifruits worldwide. We previously screened Psa3-transposon-inserted mutants and obtained reduced-virulence mutants with genes encoding the flagellar protein. Flagella are involved in the motility of bacteria and contribute to <i>P. syringae</i> invasion of plant leaves. However, whether flagella are required for the ability to enter stomata and then multiply in the plant apoplast is not known. Here, we sprayed kiwifruit leaves with Psa3-flagellar-defective mutants and found that their virulence was reduced compared to that of the Psa3 wild type, but their virulence was not reduced when the leaves were infiltrated with Psa3-flagellar-defective mutants using a syringe. Motility and bacterial entry into apoplastic space of the flagellar-defective mutants were also significantly reduced. These results indicate that flagella contribute to Psa3 motility and stomata-mediated entry, leading to disease development, but not multiplication in apoplast space after Psa3 entry. This study provides new insight into bacterial motility in host plants.</p>","PeriodicalId":15825,"journal":{"name":"Journal of General Plant Pathology","volume":"52 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flagellar motility of Pseudomonas syringae pv. actinidiae biovar 3 contributes to bacterial infection through stomata\",\"authors\":\"Giyu Usuki, Takako Ishiga, Nanami Sakata, Yasuhiro Ishiga\",\"doi\":\"10.1007/s10327-024-01172-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Highly virulent <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> biovar 3 (Psa3) causes kiwifruit bacterial canker, which seriously damages kiwifruits worldwide. We previously screened Psa3-transposon-inserted mutants and obtained reduced-virulence mutants with genes encoding the flagellar protein. Flagella are involved in the motility of bacteria and contribute to <i>P. syringae</i> invasion of plant leaves. However, whether flagella are required for the ability to enter stomata and then multiply in the plant apoplast is not known. Here, we sprayed kiwifruit leaves with Psa3-flagellar-defective mutants and found that their virulence was reduced compared to that of the Psa3 wild type, but their virulence was not reduced when the leaves were infiltrated with Psa3-flagellar-defective mutants using a syringe. Motility and bacterial entry into apoplastic space of the flagellar-defective mutants were also significantly reduced. These results indicate that flagella contribute to Psa3 motility and stomata-mediated entry, leading to disease development, but not multiplication in apoplast space after Psa3 entry. This study provides new insight into bacterial motility in host plants.</p>\",\"PeriodicalId\":15825,\"journal\":{\"name\":\"Journal of General Plant Pathology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of General Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10327-024-01172-6\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10327-024-01172-6","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Flagellar motility of Pseudomonas syringae pv. actinidiae biovar 3 contributes to bacterial infection through stomata
Highly virulent Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) causes kiwifruit bacterial canker, which seriously damages kiwifruits worldwide. We previously screened Psa3-transposon-inserted mutants and obtained reduced-virulence mutants with genes encoding the flagellar protein. Flagella are involved in the motility of bacteria and contribute to P. syringae invasion of plant leaves. However, whether flagella are required for the ability to enter stomata and then multiply in the plant apoplast is not known. Here, we sprayed kiwifruit leaves with Psa3-flagellar-defective mutants and found that their virulence was reduced compared to that of the Psa3 wild type, but their virulence was not reduced when the leaves were infiltrated with Psa3-flagellar-defective mutants using a syringe. Motility and bacterial entry into apoplastic space of the flagellar-defective mutants were also significantly reduced. These results indicate that flagella contribute to Psa3 motility and stomata-mediated entry, leading to disease development, but not multiplication in apoplast space after Psa3 entry. This study provides new insight into bacterial motility in host plants.
期刊介绍:
The Journal of General Plant Pathology welcomes all manuscripts dealing with plant diseases or their control, including pathogen characterization, identification of pathogens, disease physiology and biochemistry, molecular biology, morphology and ultrastructure, genetics, disease transmission, ecology and epidemiology, chemical and biological control, disease assessment, and other topics relevant to plant pathological disorders.