利用真实人力资源数据进行机器学习:减少预测性能与透明度之间的权衡

Ansgar Heidemann, Svenja M. Hülter, Michael Tekieli
{"title":"利用真实人力资源数据进行机器学习:减少预测性能与透明度之间的权衡","authors":"Ansgar Heidemann, Svenja M. Hülter, Michael Tekieli","doi":"10.1080/09585192.2024.2335515","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) algorithms offer a powerful tool for capturing multifaceted relationships through inductive research to gain insights and support decision-making in practice. This study contr...","PeriodicalId":22502,"journal":{"name":"The International Journal of Human Resource Management","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning with real-world HR data: mitigating the trade-off between predictive performance and transparency\",\"authors\":\"Ansgar Heidemann, Svenja M. Hülter, Michael Tekieli\",\"doi\":\"10.1080/09585192.2024.2335515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning (ML) algorithms offer a powerful tool for capturing multifaceted relationships through inductive research to gain insights and support decision-making in practice. This study contr...\",\"PeriodicalId\":22502,\"journal\":{\"name\":\"The International Journal of Human Resource Management\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Human Resource Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09585192.2024.2335515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Human Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09585192.2024.2335515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)算法提供了一种强大的工具,可通过归纳研究捕捉多方面的关系,从而在实践中获得洞察力并支持决策。本研究对比了...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning with real-world HR data: mitigating the trade-off between predictive performance and transparency
Machine Learning (ML) algorithms offer a powerful tool for capturing multifaceted relationships through inductive research to gain insights and support decision-making in practice. This study contr...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信