Larissa K Karas, Courtney Patterson, Zachary J Fuller, Erin L Karschner
{"title":"自动化提取和 LC-MS/MS 分析 11-去甲-9-羧基四氢大麻酚异构体和真实尿液样本中的流行率","authors":"Larissa K Karas, Courtney Patterson, Zachary J Fuller, Erin L Karschner","doi":"10.1093/jat/bkae031","DOIUrl":null,"url":null,"abstract":"11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (Δ9-THCCOOH) is the most frequently detected illicit drug metabolite in the military drug testing program. An increasing number of specimens containing unresolved Δ8-THCCOOH prompted the addition of this analyte to the Department of Defense (DoD) drug testing panel. A method was developed and validated for the quantitative confirmation of the carboxylated metabolites of Δ8- and Δ9-THC in urine samples utilizing automated pipette tip dispersive solid phase extraction and analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Analytes were separated isocratically over an 8.5 min runtime and detected on an MS/MS system equipped with an electrospray ionization source operating in negative mode. A single point calibrator (15 ng/mL) forced through zero demonstrated linearity from 3 to 1,000 ng/mL. Intra- and inter-day precision were ≤9.1% CV, and bias was within ±14.1% for Δ8-THCCOOH and Δ9-THCCOOH. No interferences were found after challenging the method with different over-the-counter drugs, prescription pharmaceuticals, drugs of abuse, and several cannabinoids and cannabinoid metabolites, including Δ1°-THCCOOH. Urine specimens presumptively positive by immunoassay (n=2939; 50 ng/mL Δ9-THCCOOH cutoff) were analyzed with this confirmation method. Specimens that contained Δ8-THCCOOH often had Δ9-THCCOOH above the 15 ng/mL cutoff. However, nearly one-third of the specimens analyzed were positive for Δ8-THCCOOH only. This manuscript describes the first validated automated extraction and confirmation method for Δ8- and Δ9-THCCOOH in urine that provides adequate analyte separation in urine specimens with extreme isomer abundance ratios.","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":"79 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Extraction and LC-MS/MS Analysis of 11-Nor-9-carboxy-tetrahydrocannabinol Isomers and Prevalence in Authentic Urine Specimens\",\"authors\":\"Larissa K Karas, Courtney Patterson, Zachary J Fuller, Erin L Karschner\",\"doi\":\"10.1093/jat/bkae031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (Δ9-THCCOOH) is the most frequently detected illicit drug metabolite in the military drug testing program. An increasing number of specimens containing unresolved Δ8-THCCOOH prompted the addition of this analyte to the Department of Defense (DoD) drug testing panel. A method was developed and validated for the quantitative confirmation of the carboxylated metabolites of Δ8- and Δ9-THC in urine samples utilizing automated pipette tip dispersive solid phase extraction and analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Analytes were separated isocratically over an 8.5 min runtime and detected on an MS/MS system equipped with an electrospray ionization source operating in negative mode. A single point calibrator (15 ng/mL) forced through zero demonstrated linearity from 3 to 1,000 ng/mL. Intra- and inter-day precision were ≤9.1% CV, and bias was within ±14.1% for Δ8-THCCOOH and Δ9-THCCOOH. No interferences were found after challenging the method with different over-the-counter drugs, prescription pharmaceuticals, drugs of abuse, and several cannabinoids and cannabinoid metabolites, including Δ1°-THCCOOH. Urine specimens presumptively positive by immunoassay (n=2939; 50 ng/mL Δ9-THCCOOH cutoff) were analyzed with this confirmation method. Specimens that contained Δ8-THCCOOH often had Δ9-THCCOOH above the 15 ng/mL cutoff. However, nearly one-third of the specimens analyzed were positive for Δ8-THCCOOH only. This manuscript describes the first validated automated extraction and confirmation method for Δ8- and Δ9-THCCOOH in urine that provides adequate analyte separation in urine specimens with extreme isomer abundance ratios.\",\"PeriodicalId\":14905,\"journal\":{\"name\":\"Journal of analytical toxicology\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of analytical toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jat/bkae031\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkae031","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Automated Extraction and LC-MS/MS Analysis of 11-Nor-9-carboxy-tetrahydrocannabinol Isomers and Prevalence in Authentic Urine Specimens
11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (Δ9-THCCOOH) is the most frequently detected illicit drug metabolite in the military drug testing program. An increasing number of specimens containing unresolved Δ8-THCCOOH prompted the addition of this analyte to the Department of Defense (DoD) drug testing panel. A method was developed and validated for the quantitative confirmation of the carboxylated metabolites of Δ8- and Δ9-THC in urine samples utilizing automated pipette tip dispersive solid phase extraction and analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Analytes were separated isocratically over an 8.5 min runtime and detected on an MS/MS system equipped with an electrospray ionization source operating in negative mode. A single point calibrator (15 ng/mL) forced through zero demonstrated linearity from 3 to 1,000 ng/mL. Intra- and inter-day precision were ≤9.1% CV, and bias was within ±14.1% for Δ8-THCCOOH and Δ9-THCCOOH. No interferences were found after challenging the method with different over-the-counter drugs, prescription pharmaceuticals, drugs of abuse, and several cannabinoids and cannabinoid metabolites, including Δ1°-THCCOOH. Urine specimens presumptively positive by immunoassay (n=2939; 50 ng/mL Δ9-THCCOOH cutoff) were analyzed with this confirmation method. Specimens that contained Δ8-THCCOOH often had Δ9-THCCOOH above the 15 ng/mL cutoff. However, nearly one-third of the specimens analyzed were positive for Δ8-THCCOOH only. This manuscript describes the first validated automated extraction and confirmation method for Δ8- and Δ9-THCCOOH in urine that provides adequate analyte separation in urine specimens with extreme isomer abundance ratios.
期刊介绍:
The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation.
Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.