博尔察-沃辛 Calabi-Yau Manifolds 的高维类比、其霍奇数和 L 函数

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Dominik Burek
{"title":"博尔察-沃辛 Calabi-Yau Manifolds 的高维类比、其霍奇数和 L 函数","authors":"Dominik Burek","doi":"10.1007/s00220-024-04965-0","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a series of examples of Calabi-Yau manifolds in an arbitrary dimension and compute the main invariants. In particular, we give higher dimensional generalization of Borcea-Voisin Calabi-Yau threefolds. We give a method to compute a local zeta function using the Frobenius morphism for orbifold cohomology introduced by Rose. We compute Hodge numbers of the constructed examples using orbifold Chen-Ruan cohomology.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher Dimensional Analogon of Borcea-Voisin Calabi-Yau Manifolds, Their Hodge Numbers and L-Functions\",\"authors\":\"Dominik Burek\",\"doi\":\"10.1007/s00220-024-04965-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a series of examples of Calabi-Yau manifolds in an arbitrary dimension and compute the main invariants. In particular, we give higher dimensional generalization of Borcea-Voisin Calabi-Yau threefolds. We give a method to compute a local zeta function using the Frobenius morphism for orbifold cohomology introduced by Rose. We compute Hodge numbers of the constructed examples using orbifold Chen-Ruan cohomology.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-04965-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-04965-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一系列任意维度的 Calabi-Yau 流形实例,并计算了主要不变式。特别是,我们给出了博尔察-沃辛 Calabi-Yau 三维流形的高维广义。我们给出了一种利用罗斯引入的轨道同调的弗罗贝尼斯变形计算局部zeta函数的方法。我们利用轨道陈阮同调计算所建实例的霍奇数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher Dimensional Analogon of Borcea-Voisin Calabi-Yau Manifolds, Their Hodge Numbers and L-Functions

We construct a series of examples of Calabi-Yau manifolds in an arbitrary dimension and compute the main invariants. In particular, we give higher dimensional generalization of Borcea-Voisin Calabi-Yau threefolds. We give a method to compute a local zeta function using the Frobenius morphism for orbifold cohomology introduced by Rose. We compute Hodge numbers of the constructed examples using orbifold Chen-Ruan cohomology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信