非赫米提皮肤效应的数学基础

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Habib Ammari, Silvio Barandun, Jinghao Cao, Bryn Davies, Erik Orvehed Hiltunen
{"title":"非赫米提皮肤效应的数学基础","authors":"Habib Ammari,&nbsp;Silvio Barandun,&nbsp;Jinghao Cao,&nbsp;Bryn Davies,&nbsp;Erik Orvehed Hiltunen","doi":"10.1007/s00205-024-01976-y","DOIUrl":null,"url":null,"abstract":"<div><p>We study the skin effect in a one-dimensional system of finitely many subwavelength resonators with a non-Hermitian imaginary gauge potential. Using Toeplitz matrix theory, we prove the condensation of bulk eigenmodes at one of the edges of the system. By introducing a generalised (complex) Brillouin zone, we can compute spectral bands of the associated infinitely periodic structure and prove that this is the limit of the spectra of the finite structures with arbitrarily large size. Finally, we contrast the non-Hermitian systems with imaginary gauge potentials considered here with systems where the non-Hermiticity arises due to complex material parameters, showing that the two systems are fundamentally distinct.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-01976-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Mathematical Foundations of the Non-Hermitian Skin Effect\",\"authors\":\"Habib Ammari,&nbsp;Silvio Barandun,&nbsp;Jinghao Cao,&nbsp;Bryn Davies,&nbsp;Erik Orvehed Hiltunen\",\"doi\":\"10.1007/s00205-024-01976-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the skin effect in a one-dimensional system of finitely many subwavelength resonators with a non-Hermitian imaginary gauge potential. Using Toeplitz matrix theory, we prove the condensation of bulk eigenmodes at one of the edges of the system. By introducing a generalised (complex) Brillouin zone, we can compute spectral bands of the associated infinitely periodic structure and prove that this is the limit of the spectra of the finite structures with arbitrarily large size. Finally, we contrast the non-Hermitian systems with imaginary gauge potentials considered here with systems where the non-Hermiticity arises due to complex material parameters, showing that the two systems are fundamentally distinct.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-01976-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-01976-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01976-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了由有限多个亚波长谐振器组成的一维系统中的趋肤效应,该系统具有非赫米提虚规势能。利用托普利兹矩阵理论,我们证明了体特征模在系统边缘的凝聚。通过引入广义(复)布里渊区,我们可以计算相关无限周期结构的谱带,并证明这是具有任意大尺寸的有限结构谱的极限。最后,我们将这里所考虑的具有虚规势的非恒定系统与由于复杂材料参数而产生非恒定性的系统进行了对比,表明这两个系统在本质上是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mathematical Foundations of the Non-Hermitian Skin Effect

Mathematical Foundations of the Non-Hermitian Skin Effect

We study the skin effect in a one-dimensional system of finitely many subwavelength resonators with a non-Hermitian imaginary gauge potential. Using Toeplitz matrix theory, we prove the condensation of bulk eigenmodes at one of the edges of the system. By introducing a generalised (complex) Brillouin zone, we can compute spectral bands of the associated infinitely periodic structure and prove that this is the limit of the spectra of the finite structures with arbitrarily large size. Finally, we contrast the non-Hermitian systems with imaginary gauge potentials considered here with systems where the non-Hermiticity arises due to complex material parameters, showing that the two systems are fundamentally distinct.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信