{"title":"论某些群的换向自形","authors":"Nazila Azimi Shahrabi, Mehri Akhavan Malayeri","doi":"10.1007/s11587-024-00853-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a group. If the set <span>\\({\\mathcal {A}}(G)=\\lbrace \\alpha \\in {\\textit{Aut}}(G): x\\alpha (x)=\\alpha (x)x\\; \\textit{for all}\\; x\\in G\\rbrace \\)</span> forms a subgroup of <span>\\({\\textit{Aut}}(G)\\)</span>, then <i>G</i> is called <span>\\({\\mathcal {A}}\\)</span>-group. In this paper, we prove that a metacyclic group is an <span>\\({\\mathcal {A}}\\)</span>-group. Also, we show that, for any positive integer <i>n</i> and any prime number <i>p</i>, there exists a finite <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-group of nilpotency class <i>n</i>. Since there exist finite non <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-groups with <span>\\(\\vert G/G^{\\prime }\\vert = p^{4}\\)</span>, we find suitable conditions implying that a finite <i>p</i>-group with <span>\\(\\vert G/G^{\\prime }\\vert \\le p^{3}\\)</span> is an <span>\\({\\mathcal {A}}\\)</span>-group. Using these results, we show that there exists a finite <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-group <i>G</i> of order <span>\\(p^{n}\\)</span> for all <span>\\(n\\ge 4\\)</span> such that <span>\\({\\mathcal {A}}(G)\\)</span> is equal to the central automorphisms group of <i>G</i>. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.\n</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"49 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On commuting automorphisms of some groups\",\"authors\":\"Nazila Azimi Shahrabi, Mehri Akhavan Malayeri\",\"doi\":\"10.1007/s11587-024-00853-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a group. If the set <span>\\\\({\\\\mathcal {A}}(G)=\\\\lbrace \\\\alpha \\\\in {\\\\textit{Aut}}(G): x\\\\alpha (x)=\\\\alpha (x)x\\\\; \\\\textit{for all}\\\\; x\\\\in G\\\\rbrace \\\\)</span> forms a subgroup of <span>\\\\({\\\\textit{Aut}}(G)\\\\)</span>, then <i>G</i> is called <span>\\\\({\\\\mathcal {A}}\\\\)</span>-group. In this paper, we prove that a metacyclic group is an <span>\\\\({\\\\mathcal {A}}\\\\)</span>-group. Also, we show that, for any positive integer <i>n</i> and any prime number <i>p</i>, there exists a finite <span>\\\\({\\\\mathcal {A}}\\\\)</span> <i>p</i>-group of nilpotency class <i>n</i>. Since there exist finite non <span>\\\\({\\\\mathcal {A}}\\\\)</span> <i>p</i>-groups with <span>\\\\(\\\\vert G/G^{\\\\prime }\\\\vert = p^{4}\\\\)</span>, we find suitable conditions implying that a finite <i>p</i>-group with <span>\\\\(\\\\vert G/G^{\\\\prime }\\\\vert \\\\le p^{3}\\\\)</span> is an <span>\\\\({\\\\mathcal {A}}\\\\)</span>-group. Using these results, we show that there exists a finite <span>\\\\({\\\\mathcal {A}}\\\\)</span> <i>p</i>-group <i>G</i> of order <span>\\\\(p^{n}\\\\)</span> for all <span>\\\\(n\\\\ge 4\\\\)</span> such that <span>\\\\({\\\\mathcal {A}}(G)\\\\)</span> is equal to the central automorphisms group of <i>G</i>. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.\\n</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-024-00853-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00853-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 G 是一个群。如果集合 \({\mathcal {A}}(G)=\lbrace \alpha \in {\textit{Aut}}(G): x\alpha (x)=\alpha (x)x\; \textit{for all}\; x\in G\rbrace \) 构成了 \({\textit{Aut}}(G)\) 的一个子群,那么 G 就叫做 \({\mathcal {A}}\)- 群。本文将证明元循环群是一个 ({\mathcal {A}})群。同时,我们还证明了,对于任意正整数 n 和任意素数 p,都存在一个无幂级数 n 的有限的 \({\mathcal {A}}\) p 群。由于存在有限的非\({\mathcal {A}}\) p群,其\(\vert G/G^{\prime }\vert = p^{4}\),我们找到了合适的条件,意味着有限的p群,其\(\vert G/G^{\prime }\vert \le p^{3}\)是一个\({\mathcal {A}}\)群。利用这些结果,我们证明了对于所有的 \(n\ge 4\) 都存在一个阶为 \(p^{n}\) 的有限的 \({\mathcal {A}}(G)\) p 群 G,使得 \({\mathcal {A}}(G)\) 等于 G 的中心自变群。最后,我们利用群的半间接积和花环积来得到合适的例子。
Let G be a group. If the set \({\mathcal {A}}(G)=\lbrace \alpha \in {\textit{Aut}}(G): x\alpha (x)=\alpha (x)x\; \textit{for all}\; x\in G\rbrace \) forms a subgroup of \({\textit{Aut}}(G)\), then G is called \({\mathcal {A}}\)-group. In this paper, we prove that a metacyclic group is an \({\mathcal {A}}\)-group. Also, we show that, for any positive integer n and any prime number p, there exists a finite \({\mathcal {A}}\)p-group of nilpotency class n. Since there exist finite non \({\mathcal {A}}\)p-groups with \(\vert G/G^{\prime }\vert = p^{4}\), we find suitable conditions implying that a finite p-group with \(\vert G/G^{\prime }\vert \le p^{3}\) is an \({\mathcal {A}}\)-group. Using these results, we show that there exists a finite \({\mathcal {A}}\)p-group G of order \(p^{n}\) for all \(n\ge 4\) such that \({\mathcal {A}}(G)\) is equal to the central automorphisms group of G. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.
期刊介绍:
“Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.