{"title":"论某些群的换向自形","authors":"Nazila Azimi Shahrabi, Mehri Akhavan Malayeri","doi":"10.1007/s11587-024-00853-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a group. If the set <span>\\({\\mathcal {A}}(G)=\\lbrace \\alpha \\in {\\textit{Aut}}(G): x\\alpha (x)=\\alpha (x)x\\; \\textit{for all}\\; x\\in G\\rbrace \\)</span> forms a subgroup of <span>\\({\\textit{Aut}}(G)\\)</span>, then <i>G</i> is called <span>\\({\\mathcal {A}}\\)</span>-group. In this paper, we prove that a metacyclic group is an <span>\\({\\mathcal {A}}\\)</span>-group. Also, we show that, for any positive integer <i>n</i> and any prime number <i>p</i>, there exists a finite <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-group of nilpotency class <i>n</i>. Since there exist finite non <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-groups with <span>\\(\\vert G/G^{\\prime }\\vert = p^{4}\\)</span>, we find suitable conditions implying that a finite <i>p</i>-group with <span>\\(\\vert G/G^{\\prime }\\vert \\le p^{3}\\)</span> is an <span>\\({\\mathcal {A}}\\)</span>-group. Using these results, we show that there exists a finite <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-group <i>G</i> of order <span>\\(p^{n}\\)</span> for all <span>\\(n\\ge 4\\)</span> such that <span>\\({\\mathcal {A}}(G)\\)</span> is equal to the central automorphisms group of <i>G</i>. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On commuting automorphisms of some groups\",\"authors\":\"Nazila Azimi Shahrabi, Mehri Akhavan Malayeri\",\"doi\":\"10.1007/s11587-024-00853-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a group. If the set <span>\\\\({\\\\mathcal {A}}(G)=\\\\lbrace \\\\alpha \\\\in {\\\\textit{Aut}}(G): x\\\\alpha (x)=\\\\alpha (x)x\\\\; \\\\textit{for all}\\\\; x\\\\in G\\\\rbrace \\\\)</span> forms a subgroup of <span>\\\\({\\\\textit{Aut}}(G)\\\\)</span>, then <i>G</i> is called <span>\\\\({\\\\mathcal {A}}\\\\)</span>-group. In this paper, we prove that a metacyclic group is an <span>\\\\({\\\\mathcal {A}}\\\\)</span>-group. Also, we show that, for any positive integer <i>n</i> and any prime number <i>p</i>, there exists a finite <span>\\\\({\\\\mathcal {A}}\\\\)</span> <i>p</i>-group of nilpotency class <i>n</i>. Since there exist finite non <span>\\\\({\\\\mathcal {A}}\\\\)</span> <i>p</i>-groups with <span>\\\\(\\\\vert G/G^{\\\\prime }\\\\vert = p^{4}\\\\)</span>, we find suitable conditions implying that a finite <i>p</i>-group with <span>\\\\(\\\\vert G/G^{\\\\prime }\\\\vert \\\\le p^{3}\\\\)</span> is an <span>\\\\({\\\\mathcal {A}}\\\\)</span>-group. Using these results, we show that there exists a finite <span>\\\\({\\\\mathcal {A}}\\\\)</span> <i>p</i>-group <i>G</i> of order <span>\\\\(p^{n}\\\\)</span> for all <span>\\\\(n\\\\ge 4\\\\)</span> such that <span>\\\\({\\\\mathcal {A}}(G)\\\\)</span> is equal to the central automorphisms group of <i>G</i>. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.\\n</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-024-00853-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00853-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
设 G 是一个群。如果集合 \({\mathcal {A}}(G)=\lbrace \alpha \in {\textit{Aut}}(G): x\alpha (x)=\alpha (x)x\; \textit{for all}\; x\in G\rbrace \) 构成了 \({\textit{Aut}}(G)\) 的一个子群,那么 G 就叫做 \({\mathcal {A}}\)- 群。本文将证明元循环群是一个 ({\mathcal {A}})群。同时,我们还证明了,对于任意正整数 n 和任意素数 p,都存在一个无幂级数 n 的有限的 \({\mathcal {A}}\) p 群。由于存在有限的非\({\mathcal {A}}\) p群,其\(\vert G/G^{\prime }\vert = p^{4}\),我们找到了合适的条件,意味着有限的p群,其\(\vert G/G^{\prime }\vert \le p^{3}\)是一个\({\mathcal {A}}\)群。利用这些结果,我们证明了对于所有的 \(n\ge 4\) 都存在一个阶为 \(p^{n}\) 的有限的 \({\mathcal {A}}(G)\) p 群 G,使得 \({\mathcal {A}}(G)\) 等于 G 的中心自变群。最后,我们利用群的半间接积和花环积来得到合适的例子。
Let G be a group. If the set \({\mathcal {A}}(G)=\lbrace \alpha \in {\textit{Aut}}(G): x\alpha (x)=\alpha (x)x\; \textit{for all}\; x\in G\rbrace \) forms a subgroup of \({\textit{Aut}}(G)\), then G is called \({\mathcal {A}}\)-group. In this paper, we prove that a metacyclic group is an \({\mathcal {A}}\)-group. Also, we show that, for any positive integer n and any prime number p, there exists a finite \({\mathcal {A}}\)p-group of nilpotency class n. Since there exist finite non \({\mathcal {A}}\)p-groups with \(\vert G/G^{\prime }\vert = p^{4}\), we find suitable conditions implying that a finite p-group with \(\vert G/G^{\prime }\vert \le p^{3}\) is an \({\mathcal {A}}\)-group. Using these results, we show that there exists a finite \({\mathcal {A}}\)p-group G of order \(p^{n}\) for all \(n\ge 4\) such that \({\mathcal {A}}(G)\) is equal to the central automorphisms group of G. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.