论某些群的换向自形

IF 1.1 4区 数学 Q1 MATHEMATICS
Nazila Azimi Shahrabi, Mehri Akhavan Malayeri
{"title":"论某些群的换向自形","authors":"Nazila Azimi Shahrabi, Mehri Akhavan Malayeri","doi":"10.1007/s11587-024-00853-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a group. If the set <span>\\({\\mathcal {A}}(G)=\\lbrace \\alpha \\in {\\textit{Aut}}(G): x\\alpha (x)=\\alpha (x)x\\; \\textit{for all}\\; x\\in G\\rbrace \\)</span> forms a subgroup of <span>\\({\\textit{Aut}}(G)\\)</span>, then <i>G</i> is called <span>\\({\\mathcal {A}}\\)</span>-group. In this paper, we prove that a metacyclic group is an <span>\\({\\mathcal {A}}\\)</span>-group. Also, we show that, for any positive integer <i>n</i> and any prime number <i>p</i>, there exists a finite <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-group of nilpotency class <i>n</i>. Since there exist finite non <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-groups with <span>\\(\\vert G/G^{\\prime }\\vert = p^{4}\\)</span>, we find suitable conditions implying that a finite <i>p</i>-group with <span>\\(\\vert G/G^{\\prime }\\vert \\le p^{3}\\)</span> is an <span>\\({\\mathcal {A}}\\)</span>-group. Using these results, we show that there exists a finite <span>\\({\\mathcal {A}}\\)</span> <i>p</i>-group <i>G</i> of order <span>\\(p^{n}\\)</span> for all <span>\\(n\\ge 4\\)</span> such that <span>\\({\\mathcal {A}}(G)\\)</span> is equal to the central automorphisms group of <i>G</i>. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.\n</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"49 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On commuting automorphisms of some groups\",\"authors\":\"Nazila Azimi Shahrabi, Mehri Akhavan Malayeri\",\"doi\":\"10.1007/s11587-024-00853-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a group. If the set <span>\\\\({\\\\mathcal {A}}(G)=\\\\lbrace \\\\alpha \\\\in {\\\\textit{Aut}}(G): x\\\\alpha (x)=\\\\alpha (x)x\\\\; \\\\textit{for all}\\\\; x\\\\in G\\\\rbrace \\\\)</span> forms a subgroup of <span>\\\\({\\\\textit{Aut}}(G)\\\\)</span>, then <i>G</i> is called <span>\\\\({\\\\mathcal {A}}\\\\)</span>-group. In this paper, we prove that a metacyclic group is an <span>\\\\({\\\\mathcal {A}}\\\\)</span>-group. Also, we show that, for any positive integer <i>n</i> and any prime number <i>p</i>, there exists a finite <span>\\\\({\\\\mathcal {A}}\\\\)</span> <i>p</i>-group of nilpotency class <i>n</i>. Since there exist finite non <span>\\\\({\\\\mathcal {A}}\\\\)</span> <i>p</i>-groups with <span>\\\\(\\\\vert G/G^{\\\\prime }\\\\vert = p^{4}\\\\)</span>, we find suitable conditions implying that a finite <i>p</i>-group with <span>\\\\(\\\\vert G/G^{\\\\prime }\\\\vert \\\\le p^{3}\\\\)</span> is an <span>\\\\({\\\\mathcal {A}}\\\\)</span>-group. Using these results, we show that there exists a finite <span>\\\\({\\\\mathcal {A}}\\\\)</span> <i>p</i>-group <i>G</i> of order <span>\\\\(p^{n}\\\\)</span> for all <span>\\\\(n\\\\ge 4\\\\)</span> such that <span>\\\\({\\\\mathcal {A}}(G)\\\\)</span> is equal to the central automorphisms group of <i>G</i>. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.\\n</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-024-00853-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00853-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是一个群。如果集合 \({\mathcal {A}}(G)=\lbrace \alpha \in {\textit{Aut}}(G): x\alpha (x)=\alpha (x)x\; \textit{for all}\; x\in G\rbrace \) 构成了 \({\textit{Aut}}(G)\) 的一个子群,那么 G 就叫做 \({\mathcal {A}}\)- 群。本文将证明元循环群是一个 ({\mathcal {A}})群。同时,我们还证明了,对于任意正整数 n 和任意素数 p,都存在一个无幂级数 n 的有限的 \({\mathcal {A}}\) p 群。由于存在有限的非\({\mathcal {A}}\) p群,其\(\vert G/G^{\prime }\vert = p^{4}\),我们找到了合适的条件,意味着有限的p群,其\(\vert G/G^{\prime }\vert \le p^{3}\)是一个\({\mathcal {A}}\)群。利用这些结果,我们证明了对于所有的 \(n\ge 4\) 都存在一个阶为 \(p^{n}\) 的有限的 \({\mathcal {A}}(G)\) p 群 G,使得 \({\mathcal {A}}(G)\) 等于 G 的中心自变群。最后,我们利用群的半间接积和花环积来得到合适的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On commuting automorphisms of some groups

Let G be a group. If the set \({\mathcal {A}}(G)=\lbrace \alpha \in {\textit{Aut}}(G): x\alpha (x)=\alpha (x)x\; \textit{for all}\; x\in G\rbrace \) forms a subgroup of \({\textit{Aut}}(G)\), then G is called \({\mathcal {A}}\)-group. In this paper, we prove that a metacyclic group is an \({\mathcal {A}}\)-group. Also, we show that, for any positive integer n and any prime number p, there exists a finite \({\mathcal {A}}\) p-group of nilpotency class n. Since there exist finite non \({\mathcal {A}}\) p-groups with \(\vert G/G^{\prime }\vert = p^{4}\), we find suitable conditions implying that a finite p-group with \(\vert G/G^{\prime }\vert \le p^{3}\) is an \({\mathcal {A}}\)-group. Using these results, we show that there exists a finite \({\mathcal {A}}\) p-group G of order \(p^{n}\) for all \(n\ge 4\) such that \({\mathcal {A}}(G)\) is equal to the central automorphisms group of G. Finally, we use semidirect product and wreath product of groups to obtain suitable examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信