土壤微生物组的生物技术潜力

IF 1.3 4区 生物学 Q4 MICROBIOLOGY
N. A. Manucharova, A. P. Vlasova, M. A. Kovalenko, E. A. Ovchinnikova, A. D. Babenko, G. A. Teregulova, G. V. Uvarov, A. L. Stepanov
{"title":"土壤微生物组的生物技术潜力","authors":"N. A. Manucharova, A. P. Vlasova, M. A. Kovalenko, E. A. Ovchinnikova, A. D. Babenko, G. A. Teregulova, G. V. Uvarov, A. L. Stepanov","doi":"10.1134/s0026261723604335","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>\n</h3><p>Molecular biological techniques and bioinformatic analysis were used to investigate the phylogenetic and functional diversity of the prokaryotic complex of soil microcosms. The dominant organisms of the hydrolytic community were different in the samples from different climatic zones. In the soils subject to anthropogenic or abiogenic load, apart from decreased diversity and abundance of prokaryotes, the number of the genes marking the ability to degrade xenobiotics, as well as those encoding nitrogen conversion and metabolism of vitamins and cofactors, was found to increase. Under heavy oil contamination, the bacterial community was capable of nitrification; its role increased in the lower horizons of the soil profile. The patterns revealed in the work indicate high metabolic potential of the prokaryotic component of the studied soils.</p>","PeriodicalId":18514,"journal":{"name":"Microbiology","volume":"84 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biotechnological Potential of the Soil Microbiome\",\"authors\":\"N. A. Manucharova, A. P. Vlasova, M. A. Kovalenko, E. A. Ovchinnikova, A. D. Babenko, G. A. Teregulova, G. V. Uvarov, A. L. Stepanov\",\"doi\":\"10.1134/s0026261723604335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">\\n<b>Abstract</b>\\n</h3><p>Molecular biological techniques and bioinformatic analysis were used to investigate the phylogenetic and functional diversity of the prokaryotic complex of soil microcosms. The dominant organisms of the hydrolytic community were different in the samples from different climatic zones. In the soils subject to anthropogenic or abiogenic load, apart from decreased diversity and abundance of prokaryotes, the number of the genes marking the ability to degrade xenobiotics, as well as those encoding nitrogen conversion and metabolism of vitamins and cofactors, was found to increase. Under heavy oil contamination, the bacterial community was capable of nitrification; its role increased in the lower horizons of the soil profile. The patterns revealed in the work indicate high metabolic potential of the prokaryotic component of the studied soils.</p>\",\"PeriodicalId\":18514,\"journal\":{\"name\":\"Microbiology\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/s0026261723604335\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s0026261723604335","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 采用分子生物学技术和生物信息学分析方法研究了土壤微生态系统原核生物群落的系统发育和功能多样性。在不同气候带的样本中,水解群落的优势生物各不相同。在受人为或非人为负荷影响的土壤中,除了原核生物的多样性和丰度下降外,还发现降解异种生物的能力基因以及编码氮转化和维生素及辅助因子代谢的基因数量增加。在重油污染条件下,细菌群落具有硝化能力;在土壤剖面的较低地层,硝化作用增强。这项研究揭示的模式表明,所研究土壤中的原核生物成分具有很高的新陈代谢潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biotechnological Potential of the Soil Microbiome

Abstract

Molecular biological techniques and bioinformatic analysis were used to investigate the phylogenetic and functional diversity of the prokaryotic complex of soil microcosms. The dominant organisms of the hydrolytic community were different in the samples from different climatic zones. In the soils subject to anthropogenic or abiogenic load, apart from decreased diversity and abundance of prokaryotes, the number of the genes marking the ability to degrade xenobiotics, as well as those encoding nitrogen conversion and metabolism of vitamins and cofactors, was found to increase. Under heavy oil contamination, the bacterial community was capable of nitrification; its role increased in the lower horizons of the soil profile. The patterns revealed in the work indicate high metabolic potential of the prokaryotic component of the studied soils.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology
Microbiology 生物-微生物学
CiteScore
2.40
自引率
13.30%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Microbiology is an is an international peer reviewed journal that covers a wide range of problems in the areas of fundamental and applied microbiology. The journal publishes experimental and theoretical papers, reviews on modern trends in different fields of microbiological science, and short communications with descriptions of unusual observations. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信