{"title":"Me31B:胚芽调控及其他方面的关键抑制因子","authors":"Ming Gao","doi":"10.1042/bsr20231769","DOIUrl":null,"url":null,"abstract":"Me31B, an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Me31B, A Key Repressor in Germline Regulation and Beyond.\",\"authors\":\"Ming Gao\",\"doi\":\"10.1042/bsr20231769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Me31B, an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.\",\"PeriodicalId\":8926,\"journal\":{\"name\":\"Bioscience Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/bsr20231769\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/bsr20231769","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Me31B, A Key Repressor in Germline Regulation and Beyond.
Me31B, an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics