{"title":"次优重要性取样的非渐近边界","authors":"Carsten Hartmann, Lorenz Richter","doi":"10.1137/21m1427760","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 309-346, June 2024. <br/> Abstract. Importance sampling is a popular variance reduction method for Monte Carlo estimation, where an evident question is how to design good proposal distributions. While in most cases optimal (zero-variance) estimators are theoretically possible, in practice only suboptimal proposal distributions are available and it can often be observed numerically that those can reduce statistical performance significantly, leading to large relative errors and therefore counteracting the original intention. Previous analysis on importance sampling has often focused on asymptotic arguments that work well in a large deviations regime. In this article, we provide lower and upper bounds on the relative error in a nonasymptotic setting. They depend on the deviation of the actual proposal from optimality, and we thus identify potential robustness issues that importance sampling may have, especially in high dimensions. We particularly focus on path sampling problems for diffusion processes with nonvanishing noise, for which generating good proposals comes with additional technical challenges. We provide numerous numerical examples that support our findings and demonstrate the applicability of the derived bounds.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonasymptotic Bounds for Suboptimal Importance Sampling\",\"authors\":\"Carsten Hartmann, Lorenz Richter\",\"doi\":\"10.1137/21m1427760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 309-346, June 2024. <br/> Abstract. Importance sampling is a popular variance reduction method for Monte Carlo estimation, where an evident question is how to design good proposal distributions. While in most cases optimal (zero-variance) estimators are theoretically possible, in practice only suboptimal proposal distributions are available and it can often be observed numerically that those can reduce statistical performance significantly, leading to large relative errors and therefore counteracting the original intention. Previous analysis on importance sampling has often focused on asymptotic arguments that work well in a large deviations regime. In this article, we provide lower and upper bounds on the relative error in a nonasymptotic setting. They depend on the deviation of the actual proposal from optimality, and we thus identify potential robustness issues that importance sampling may have, especially in high dimensions. We particularly focus on path sampling problems for diffusion processes with nonvanishing noise, for which generating good proposals comes with additional technical challenges. We provide numerous numerical examples that support our findings and demonstrate the applicability of the derived bounds.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1427760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m1427760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Nonasymptotic Bounds for Suboptimal Importance Sampling
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 2, Page 309-346, June 2024. Abstract. Importance sampling is a popular variance reduction method for Monte Carlo estimation, where an evident question is how to design good proposal distributions. While in most cases optimal (zero-variance) estimators are theoretically possible, in practice only suboptimal proposal distributions are available and it can often be observed numerically that those can reduce statistical performance significantly, leading to large relative errors and therefore counteracting the original intention. Previous analysis on importance sampling has often focused on asymptotic arguments that work well in a large deviations regime. In this article, we provide lower and upper bounds on the relative error in a nonasymptotic setting. They depend on the deviation of the actual proposal from optimality, and we thus identify potential robustness issues that importance sampling may have, especially in high dimensions. We particularly focus on path sampling problems for diffusion processes with nonvanishing noise, for which generating good proposals comes with additional technical challenges. We provide numerous numerical examples that support our findings and demonstrate the applicability of the derived bounds.