Katarzyna Sala-Cholewa, Anna Milewska-Hendel, Reneé Pérez-Pérez, Ewa Grzebelus, Alexander Betekhtin
{"title":"法桐原生质衍生杂交细胞细胞壁的重建模式","authors":"Katarzyna Sala-Cholewa, Anna Milewska-Hendel, Reneé Pérez-Pérez, Ewa Grzebelus, Alexander Betekhtin","doi":"10.1007/s11240-024-02740-6","DOIUrl":null,"url":null,"abstract":"<p>The cell wall rebuilding is one of the first stage of protoplast development that enables further mitotic divisions and differentiation. Therefore, this work focuses on the comparison of the cell wall regeneration in the parental protoplasts of <i>Fagopyrum tataricum</i>, <i>F. esculentum</i> and the <i>F. tataricum</i> (+) <i>F. esculentum</i> hybrids, which are promising materials in terms of future breeding and research programmes. It is worth emphasizing that the preparation of buckwheat hybrids using electrofusion was described for the first time. The results indicate that cell wall rebuilding exhibited a common mechanism for parent protoplasts and the heterokaryon as all analysed cell wall components recognising arabinogalactan proteins (JIM13, JIM16), extensin (JIM20), xyloglucan (LM25) and pectins (LM20, LM5, LM6) were detected during the process of wall regeneration. However, there were certainly differences in the spatio-temporal appearance or disappearance of individual epitopes during the 72 h of the cell culture, which have been discussed in the paper.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"8 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction pattern of the cell wall in Fagopyrum protoplast-derived hybrid cells\",\"authors\":\"Katarzyna Sala-Cholewa, Anna Milewska-Hendel, Reneé Pérez-Pérez, Ewa Grzebelus, Alexander Betekhtin\",\"doi\":\"10.1007/s11240-024-02740-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cell wall rebuilding is one of the first stage of protoplast development that enables further mitotic divisions and differentiation. Therefore, this work focuses on the comparison of the cell wall regeneration in the parental protoplasts of <i>Fagopyrum tataricum</i>, <i>F. esculentum</i> and the <i>F. tataricum</i> (+) <i>F. esculentum</i> hybrids, which are promising materials in terms of future breeding and research programmes. It is worth emphasizing that the preparation of buckwheat hybrids using electrofusion was described for the first time. The results indicate that cell wall rebuilding exhibited a common mechanism for parent protoplasts and the heterokaryon as all analysed cell wall components recognising arabinogalactan proteins (JIM13, JIM16), extensin (JIM20), xyloglucan (LM25) and pectins (LM20, LM5, LM6) were detected during the process of wall regeneration. However, there were certainly differences in the spatio-temporal appearance or disappearance of individual epitopes during the 72 h of the cell culture, which have been discussed in the paper.</p>\",\"PeriodicalId\":20219,\"journal\":{\"name\":\"Plant Cell, Tissue and Organ Culture\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell, Tissue and Organ Culture\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11240-024-02740-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell, Tissue and Organ Culture","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02740-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Reconstruction pattern of the cell wall in Fagopyrum protoplast-derived hybrid cells
The cell wall rebuilding is one of the first stage of protoplast development that enables further mitotic divisions and differentiation. Therefore, this work focuses on the comparison of the cell wall regeneration in the parental protoplasts of Fagopyrum tataricum, F. esculentum and the F. tataricum (+) F. esculentum hybrids, which are promising materials in terms of future breeding and research programmes. It is worth emphasizing that the preparation of buckwheat hybrids using electrofusion was described for the first time. The results indicate that cell wall rebuilding exhibited a common mechanism for parent protoplasts and the heterokaryon as all analysed cell wall components recognising arabinogalactan proteins (JIM13, JIM16), extensin (JIM20), xyloglucan (LM25) and pectins (LM20, LM5, LM6) were detected during the process of wall regeneration. However, there were certainly differences in the spatio-temporal appearance or disappearance of individual epitopes during the 72 h of the cell culture, which have been discussed in the paper.
期刊介绍:
This journal highlights the myriad breakthrough technologies and discoveries in plant biology and biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC: Journal of Plant Biotechnology) details high-throughput analysis of gene function and expression, gene silencing and overexpression analyses, RNAi, siRNA, and miRNA studies, and much more. It examines the transcriptional and/or translational events involved in gene regulation as well as those molecular controls involved in morphogenesis of plant cells and tissues.
The journal also covers practical and applied plant biotechnology, including regeneration, organogenesis and somatic embryogenesis, gene transfer, gene flow, secondary metabolites, metabolic engineering, and impact of transgene(s) dissemination into managed and unmanaged plant systems.