Chandrasekaran Jayaraman, Chaithanya Krishna Mummidisetty, Arun Jayaraman, Kimberly Pfleeger, Michelle Jacobson, Melissa Ceruolo, Ellora Sen-Gupta, James Caccese, David Chen
{"title":"新型表面肌电图传感器的有效性和可靠性研究--在颈部脊髓损伤患者中使用固化良好的肌电图系统","authors":"Chandrasekaran Jayaraman, Chaithanya Krishna Mummidisetty, Arun Jayaraman, Kimberly Pfleeger, Michelle Jacobson, Melissa Ceruolo, Ellora Sen-Gupta, James Caccese, David Chen","doi":"10.1038/s41393-024-00981-y","DOIUrl":null,"url":null,"abstract":"Non-interventional, cross-sectional pilot study. To establish the validity and reliability of the BioStamp nPoint biosensor (Medidata Solutions, New York, NY, USA [formerly MC10, Inc.]) for measuring electromyography in individuals with cervical spinal cord injury (SCI) by comparing the surface electromyography (sEMG) metrics with the Trigno wireless electromyography system (Delsys, Natick, MA, USA). Participants were recruited from the Shirley Ryan AbilityLab registry. Individuals aged 18–70 years with cervical SCI were evaluated with the two biosensors to capture activity on upper-extremity muscles during two study sessions conducted over 2 days (day 1–consent alone; day 2–two data collections in same session). Time and frequency metrics were captured, and signal-to-noise ratio was determined for each muscle group. Test-retest reliability was determined using Pearson’s correlation. Validation of the BioStamp nPoint system was based on Bland-Altmann analysis. Among the 11 participants, 30.8% had subacute cervical injury at C5–C6; 53.8% were injured within 1 year of the study. Results from the test-retest reliability assessment revealed that most Pearson’s correlations between the two sensory measurements were strong (≥0.50). The Bland-Altman analysis found values of the signal-to-noise ratio, frequency, and peak amplitude were within the level of agreement. Signal-to-noise ratios ranged from 7.06 to 22.1. In most instances, the performance of the BioStamp nPoint sensors was moderately to strongly correlated with that of the Trigno sensors in all muscle groups tested. The BioStamp nPoint system is a valid and reliable approach to assess sEMG measures in individuals with cervical SCI. The present study was supported by AbbVie Inc.","PeriodicalId":21976,"journal":{"name":"Spinal cord","volume":"62 6","pages":"320-327"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41393-024-00981-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Validity and reliability study of a novel surface electromyography sensor using a well-consolidated electromyography system in individuals with cervical spinal cord injury\",\"authors\":\"Chandrasekaran Jayaraman, Chaithanya Krishna Mummidisetty, Arun Jayaraman, Kimberly Pfleeger, Michelle Jacobson, Melissa Ceruolo, Ellora Sen-Gupta, James Caccese, David Chen\",\"doi\":\"10.1038/s41393-024-00981-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-interventional, cross-sectional pilot study. To establish the validity and reliability of the BioStamp nPoint biosensor (Medidata Solutions, New York, NY, USA [formerly MC10, Inc.]) for measuring electromyography in individuals with cervical spinal cord injury (SCI) by comparing the surface electromyography (sEMG) metrics with the Trigno wireless electromyography system (Delsys, Natick, MA, USA). Participants were recruited from the Shirley Ryan AbilityLab registry. Individuals aged 18–70 years with cervical SCI were evaluated with the two biosensors to capture activity on upper-extremity muscles during two study sessions conducted over 2 days (day 1–consent alone; day 2–two data collections in same session). Time and frequency metrics were captured, and signal-to-noise ratio was determined for each muscle group. Test-retest reliability was determined using Pearson’s correlation. Validation of the BioStamp nPoint system was based on Bland-Altmann analysis. Among the 11 participants, 30.8% had subacute cervical injury at C5–C6; 53.8% were injured within 1 year of the study. Results from the test-retest reliability assessment revealed that most Pearson’s correlations between the two sensory measurements were strong (≥0.50). The Bland-Altman analysis found values of the signal-to-noise ratio, frequency, and peak amplitude were within the level of agreement. Signal-to-noise ratios ranged from 7.06 to 22.1. In most instances, the performance of the BioStamp nPoint sensors was moderately to strongly correlated with that of the Trigno sensors in all muscle groups tested. The BioStamp nPoint system is a valid and reliable approach to assess sEMG measures in individuals with cervical SCI. The present study was supported by AbbVie Inc.\",\"PeriodicalId\":21976,\"journal\":{\"name\":\"Spinal cord\",\"volume\":\"62 6\",\"pages\":\"320-327\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41393-024-00981-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spinal cord\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41393-024-00981-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spinal cord","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41393-024-00981-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Validity and reliability study of a novel surface electromyography sensor using a well-consolidated electromyography system in individuals with cervical spinal cord injury
Non-interventional, cross-sectional pilot study. To establish the validity and reliability of the BioStamp nPoint biosensor (Medidata Solutions, New York, NY, USA [formerly MC10, Inc.]) for measuring electromyography in individuals with cervical spinal cord injury (SCI) by comparing the surface electromyography (sEMG) metrics with the Trigno wireless electromyography system (Delsys, Natick, MA, USA). Participants were recruited from the Shirley Ryan AbilityLab registry. Individuals aged 18–70 years with cervical SCI were evaluated with the two biosensors to capture activity on upper-extremity muscles during two study sessions conducted over 2 days (day 1–consent alone; day 2–two data collections in same session). Time and frequency metrics were captured, and signal-to-noise ratio was determined for each muscle group. Test-retest reliability was determined using Pearson’s correlation. Validation of the BioStamp nPoint system was based on Bland-Altmann analysis. Among the 11 participants, 30.8% had subacute cervical injury at C5–C6; 53.8% were injured within 1 year of the study. Results from the test-retest reliability assessment revealed that most Pearson’s correlations between the two sensory measurements were strong (≥0.50). The Bland-Altman analysis found values of the signal-to-noise ratio, frequency, and peak amplitude were within the level of agreement. Signal-to-noise ratios ranged from 7.06 to 22.1. In most instances, the performance of the BioStamp nPoint sensors was moderately to strongly correlated with that of the Trigno sensors in all muscle groups tested. The BioStamp nPoint system is a valid and reliable approach to assess sEMG measures in individuals with cervical SCI. The present study was supported by AbbVie Inc.
期刊介绍:
Spinal Cord is a specialised, international journal that has been publishing spinal cord related manuscripts since 1963. It appears monthly, online and in print, and accepts contributions on spinal cord anatomy, physiology, management of injury and disease, and the quality of life and life circumstances of people with a spinal cord injury. Spinal Cord is multi-disciplinary and publishes contributions across the entire spectrum of research ranging from basic science to applied clinical research. It focuses on high quality original research, systematic reviews and narrative reviews.
Spinal Cord''s sister journal Spinal Cord Series and Cases: Clinical Management in Spinal Cord Disorders publishes high quality case reports, small case series, pilot and retrospective studies perspectives, Pulse survey articles, Point-couterpoint articles, correspondences and book reviews. It specialises in material that addresses all aspects of life for persons with spinal cord injuries or disorders. For more information, please see the aims and scope of Spinal Cord Series and Cases.