Claudia V. Luna, María J. Duarte, Elsa A. Brugnoli, Paula G. Ayala, Fabiana D. Espasandin, Aldo C. Bernardis, Luis A. Mroginski, Pedro A. Sansberro
{"title":"利用 BIT 生物反应器试管生产 Ilex paraguariensis 成株的小植株","authors":"Claudia V. Luna, María J. Duarte, Elsa A. Brugnoli, Paula G. Ayala, Fabiana D. Espasandin, Aldo C. Bernardis, Luis A. Mroginski, Pedro A. Sansberro","doi":"10.1007/s11240-024-02736-2","DOIUrl":null,"url":null,"abstract":"<p><i>Ilex paraguariensis</i> St. Hil. is cultivated in South America to prepare a tea-like infusion with pharmacological properties. Its recalcitrant character has hindered the development of a suitable method for propagating selected genotypes. This study aimed to produce in vitro plantlets from axillary shoots of adult plants using a temporary immersion bioreactor. During the elongation phase, the impact of ammonium and nitrate concentration on Murashige and Skoog quarter-strength (¼MS) formulation, macronutrient uptake, hormone supplementation, and explant density (5–30 explants) were analysed. In addition, during the induction and expression stages of root formation, the effect of indole-3-butyric acid (IBA), cadaverine, quercetin, and chlorogenic acid supplementation was studied. As a result, we propose a protocol for in vitro plantlet production of <i>I. paraguariensis</i> adult plants in bioreactors. Twenty-day-old stem segments established in semisolid ¼MS medium plus sucrose 30 g·L<sup>− 1</sup> and indole-3-acetic acid (IAA) 0.5 µM are transferred to the elongation phase during 40 days in 300 cc BIT bioreactor (20 explants per flask) containing 100 mL of ¼MS modified with double ammonium and nitrate content and N6-benzyladenine (BA) 20 µM. Then, shoots longer than one centimetre are removed from the explant and placed into a rooting medium consisting of ¼MS with sucrose 30 g·L<sup>− 1</sup> and supplemented with IBA 7.5 µM, cadaverine 20 µM, quercetin 20 µM, and chlorogenic acid 20 µM. Finally, the in vitro 30-day-old plantlets are acclimatised on 150 cc pots filled with non-sterile composted pine bark and controlled-release micro-fertiliser. An inter-simple sequence repeat assessment revealed no difference between in vitro plantlets and mother plants.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"79 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro plantlet production of Ilex paraguariensis adult plants using BIT bioreactors\",\"authors\":\"Claudia V. Luna, María J. Duarte, Elsa A. Brugnoli, Paula G. Ayala, Fabiana D. Espasandin, Aldo C. Bernardis, Luis A. Mroginski, Pedro A. Sansberro\",\"doi\":\"10.1007/s11240-024-02736-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Ilex paraguariensis</i> St. Hil. is cultivated in South America to prepare a tea-like infusion with pharmacological properties. Its recalcitrant character has hindered the development of a suitable method for propagating selected genotypes. This study aimed to produce in vitro plantlets from axillary shoots of adult plants using a temporary immersion bioreactor. During the elongation phase, the impact of ammonium and nitrate concentration on Murashige and Skoog quarter-strength (¼MS) formulation, macronutrient uptake, hormone supplementation, and explant density (5–30 explants) were analysed. In addition, during the induction and expression stages of root formation, the effect of indole-3-butyric acid (IBA), cadaverine, quercetin, and chlorogenic acid supplementation was studied. As a result, we propose a protocol for in vitro plantlet production of <i>I. paraguariensis</i> adult plants in bioreactors. Twenty-day-old stem segments established in semisolid ¼MS medium plus sucrose 30 g·L<sup>− 1</sup> and indole-3-acetic acid (IAA) 0.5 µM are transferred to the elongation phase during 40 days in 300 cc BIT bioreactor (20 explants per flask) containing 100 mL of ¼MS modified with double ammonium and nitrate content and N6-benzyladenine (BA) 20 µM. Then, shoots longer than one centimetre are removed from the explant and placed into a rooting medium consisting of ¼MS with sucrose 30 g·L<sup>− 1</sup> and supplemented with IBA 7.5 µM, cadaverine 20 µM, quercetin 20 µM, and chlorogenic acid 20 µM. Finally, the in vitro 30-day-old plantlets are acclimatised on 150 cc pots filled with non-sterile composted pine bark and controlled-release micro-fertiliser. An inter-simple sequence repeat assessment revealed no difference between in vitro plantlets and mother plants.</p>\",\"PeriodicalId\":20219,\"journal\":{\"name\":\"Plant Cell, Tissue and Organ Culture\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell, Tissue and Organ Culture\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11240-024-02736-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell, Tissue and Organ Culture","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02736-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
In vitro plantlet production of Ilex paraguariensis adult plants using BIT bioreactors
Ilex paraguariensis St. Hil. is cultivated in South America to prepare a tea-like infusion with pharmacological properties. Its recalcitrant character has hindered the development of a suitable method for propagating selected genotypes. This study aimed to produce in vitro plantlets from axillary shoots of adult plants using a temporary immersion bioreactor. During the elongation phase, the impact of ammonium and nitrate concentration on Murashige and Skoog quarter-strength (¼MS) formulation, macronutrient uptake, hormone supplementation, and explant density (5–30 explants) were analysed. In addition, during the induction and expression stages of root formation, the effect of indole-3-butyric acid (IBA), cadaverine, quercetin, and chlorogenic acid supplementation was studied. As a result, we propose a protocol for in vitro plantlet production of I. paraguariensis adult plants in bioreactors. Twenty-day-old stem segments established in semisolid ¼MS medium plus sucrose 30 g·L− 1 and indole-3-acetic acid (IAA) 0.5 µM are transferred to the elongation phase during 40 days in 300 cc BIT bioreactor (20 explants per flask) containing 100 mL of ¼MS modified with double ammonium and nitrate content and N6-benzyladenine (BA) 20 µM. Then, shoots longer than one centimetre are removed from the explant and placed into a rooting medium consisting of ¼MS with sucrose 30 g·L− 1 and supplemented with IBA 7.5 µM, cadaverine 20 µM, quercetin 20 µM, and chlorogenic acid 20 µM. Finally, the in vitro 30-day-old plantlets are acclimatised on 150 cc pots filled with non-sterile composted pine bark and controlled-release micro-fertiliser. An inter-simple sequence repeat assessment revealed no difference between in vitro plantlets and mother plants.
期刊介绍:
This journal highlights the myriad breakthrough technologies and discoveries in plant biology and biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC: Journal of Plant Biotechnology) details high-throughput analysis of gene function and expression, gene silencing and overexpression analyses, RNAi, siRNA, and miRNA studies, and much more. It examines the transcriptional and/or translational events involved in gene regulation as well as those molecular controls involved in morphogenesis of plant cells and tissues.
The journal also covers practical and applied plant biotechnology, including regeneration, organogenesis and somatic embryogenesis, gene transfer, gene flow, secondary metabolites, metabolic engineering, and impact of transgene(s) dissemination into managed and unmanaged plant systems.