{"title":"基于 GPS 的收费系统矩形介质谐振器天线的设计与实现","authors":"Mishti Gautam, Rajveer Yaduvanshi, Anup Kumar, Sushmita Bhushan, Saurabh Katiyar","doi":"10.1007/s12647-024-00747-0","DOIUrl":null,"url":null,"abstract":"<div><p>GPS is using three LEO satellites at a distance of 550 kms from earth. Starlink satellite is emerging satellite system operating at 12/14 GHz (downlink/uplink) frequency for internet services. Wi-Fi services are using ISM band at 2.4 GHz. GPS system is operating at 1.5 GHz. The roadside network frequency is 10.9 GHz. On-board unit will be in each vehicle having all these five antennas. Wireless toll collection systems can be integrated with all these services in the vehicles travelling at expressways or highways. To eliminate congestion and bring in transparency in revenue collection at toll road, this paper proposed an integrated wireless system using five dielectric resonator antennas offering different services for the efficient way of toll collection. Antennas for roadside service, GPS, Wi-Fi and satellite service have been designed to facilitate vehicles and toll authorities. This system is proposed for efficient fare collection depending on the actual distance travelled by the vehicle. This paper has proposed five thermoset microwave material of 12.8 dielectric constant dielectric resonator antennas (DRAs) using hardware prototyped and simulated models, integrated Z-shape cavity (air) for introducing right-hand circular polarization and left-hand circular polarization as novel features, beam steering using three slots with shorting pins. Measured, simulated and theoretical results have been found to be perfectly matching in the proposed DRAs. The beam steering is another novel feature, which is obtained due to structure of DRA by altering positions of ground plane slots. The proposed solution involves utilizing a machine learning model for toll collection, leveraging vehicle images captured during the transaction, and calculating the distance travelled using GPS data.</p></div>","PeriodicalId":689,"journal":{"name":"MAPAN","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Implementation of Rectangular Dielectric Resonator Antennas for GPS-Based Toll System\",\"authors\":\"Mishti Gautam, Rajveer Yaduvanshi, Anup Kumar, Sushmita Bhushan, Saurabh Katiyar\",\"doi\":\"10.1007/s12647-024-00747-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>GPS is using three LEO satellites at a distance of 550 kms from earth. Starlink satellite is emerging satellite system operating at 12/14 GHz (downlink/uplink) frequency for internet services. Wi-Fi services are using ISM band at 2.4 GHz. GPS system is operating at 1.5 GHz. The roadside network frequency is 10.9 GHz. On-board unit will be in each vehicle having all these five antennas. Wireless toll collection systems can be integrated with all these services in the vehicles travelling at expressways or highways. To eliminate congestion and bring in transparency in revenue collection at toll road, this paper proposed an integrated wireless system using five dielectric resonator antennas offering different services for the efficient way of toll collection. Antennas for roadside service, GPS, Wi-Fi and satellite service have been designed to facilitate vehicles and toll authorities. This system is proposed for efficient fare collection depending on the actual distance travelled by the vehicle. This paper has proposed five thermoset microwave material of 12.8 dielectric constant dielectric resonator antennas (DRAs) using hardware prototyped and simulated models, integrated Z-shape cavity (air) for introducing right-hand circular polarization and left-hand circular polarization as novel features, beam steering using three slots with shorting pins. Measured, simulated and theoretical results have been found to be perfectly matching in the proposed DRAs. The beam steering is another novel feature, which is obtained due to structure of DRA by altering positions of ground plane slots. The proposed solution involves utilizing a machine learning model for toll collection, leveraging vehicle images captured during the transaction, and calculating the distance travelled using GPS data.</p></div>\",\"PeriodicalId\":689,\"journal\":{\"name\":\"MAPAN\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAPAN\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12647-024-00747-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAPAN","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12647-024-00747-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Design and Implementation of Rectangular Dielectric Resonator Antennas for GPS-Based Toll System
GPS is using three LEO satellites at a distance of 550 kms from earth. Starlink satellite is emerging satellite system operating at 12/14 GHz (downlink/uplink) frequency for internet services. Wi-Fi services are using ISM band at 2.4 GHz. GPS system is operating at 1.5 GHz. The roadside network frequency is 10.9 GHz. On-board unit will be in each vehicle having all these five antennas. Wireless toll collection systems can be integrated with all these services in the vehicles travelling at expressways or highways. To eliminate congestion and bring in transparency in revenue collection at toll road, this paper proposed an integrated wireless system using five dielectric resonator antennas offering different services for the efficient way of toll collection. Antennas for roadside service, GPS, Wi-Fi and satellite service have been designed to facilitate vehicles and toll authorities. This system is proposed for efficient fare collection depending on the actual distance travelled by the vehicle. This paper has proposed five thermoset microwave material of 12.8 dielectric constant dielectric resonator antennas (DRAs) using hardware prototyped and simulated models, integrated Z-shape cavity (air) for introducing right-hand circular polarization and left-hand circular polarization as novel features, beam steering using three slots with shorting pins. Measured, simulated and theoretical results have been found to be perfectly matching in the proposed DRAs. The beam steering is another novel feature, which is obtained due to structure of DRA by altering positions of ground plane slots. The proposed solution involves utilizing a machine learning model for toll collection, leveraging vehicle images captured during the transaction, and calculating the distance travelled using GPS data.
期刊介绍:
MAPAN-Journal Metrology Society of India is a quarterly publication. It is exclusively devoted to Metrology (Scientific, Industrial or Legal). It has been fulfilling an important need of Metrologists and particularly of quality practitioners by publishing exclusive articles on scientific, industrial and legal metrology.
The journal publishes research communication or technical articles of current interest in measurement science; original work, tutorial or survey papers in any metrology related area; reviews and analytical studies in metrology; case studies on reliability, uncertainty in measurements; and reports and results of intercomparison and proficiency testing.