Lu Xiaohong, Fu Qiuxia, Li Ruie, Wang Daijie, Tobias Achu Muluh, Yan Zhang
{"title":"针对巨噬细胞的癌症治疗方法取得重大进展","authors":"Lu Xiaohong, Fu Qiuxia, Li Ruie, Wang Daijie, Tobias Achu Muluh, Yan Zhang","doi":"10.2174/0115672018299798240403062508","DOIUrl":null,"url":null,"abstract":": Macrophages are immune cells with high heterogeneity and plasticity, crucial for recognizing and eliminating foreign substances, including cancer cells. However, cancer cells can evade the immune system by producing signals that cause macrophages to switch to a pro-tumor phenotype, promoting tumor growth and progression. Tumor-associated macrophages, which infiltrate into tumor tissue, are important immune cells in the tumor microenvironment and can regulate cancer's growth, invasion, and metastasis by inhibiting tumor immunity. This review article highlights the characteristics of tumor-associated macrophages and their role in the occurrence and development of cancer. It outlines how reprogramming macrophages towards an anti-tumor phenotype can improve the response to cancer therapy. Explore the intricate process of engineered nanoparticles serving as carriers for immunostimulatory molecules, activating macrophages to instigate an anti-tumor response. Finally, it summarizes several studies demonstrating targeting macrophages is a potential in preclinical cancer models. Several challenges must be addressed in developing effective macrophage-targeted therapies, such as the heterogeneity of macrophage subtypes and their plasticity. Further research is needed to understand the mechanisms underlying macrophage function in the tumor microenvironment and identify novel targets for macrophage-directed therapies. Targeting macrophages is a promising and innovative approach to improving cancer therapy and patient outcomes.","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"249 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Epic Advancement in Targeting Macrophages for Cancer Therapy Approach\",\"authors\":\"Lu Xiaohong, Fu Qiuxia, Li Ruie, Wang Daijie, Tobias Achu Muluh, Yan Zhang\",\"doi\":\"10.2174/0115672018299798240403062508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Macrophages are immune cells with high heterogeneity and plasticity, crucial for recognizing and eliminating foreign substances, including cancer cells. However, cancer cells can evade the immune system by producing signals that cause macrophages to switch to a pro-tumor phenotype, promoting tumor growth and progression. Tumor-associated macrophages, which infiltrate into tumor tissue, are important immune cells in the tumor microenvironment and can regulate cancer's growth, invasion, and metastasis by inhibiting tumor immunity. This review article highlights the characteristics of tumor-associated macrophages and their role in the occurrence and development of cancer. It outlines how reprogramming macrophages towards an anti-tumor phenotype can improve the response to cancer therapy. Explore the intricate process of engineered nanoparticles serving as carriers for immunostimulatory molecules, activating macrophages to instigate an anti-tumor response. Finally, it summarizes several studies demonstrating targeting macrophages is a potential in preclinical cancer models. Several challenges must be addressed in developing effective macrophage-targeted therapies, such as the heterogeneity of macrophage subtypes and their plasticity. Further research is needed to understand the mechanisms underlying macrophage function in the tumor microenvironment and identify novel targets for macrophage-directed therapies. Targeting macrophages is a promising and innovative approach to improving cancer therapy and patient outcomes.\",\"PeriodicalId\":10842,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\"249 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672018299798240403062508\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115672018299798240403062508","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
An Epic Advancement in Targeting Macrophages for Cancer Therapy Approach
: Macrophages are immune cells with high heterogeneity and plasticity, crucial for recognizing and eliminating foreign substances, including cancer cells. However, cancer cells can evade the immune system by producing signals that cause macrophages to switch to a pro-tumor phenotype, promoting tumor growth and progression. Tumor-associated macrophages, which infiltrate into tumor tissue, are important immune cells in the tumor microenvironment and can regulate cancer's growth, invasion, and metastasis by inhibiting tumor immunity. This review article highlights the characteristics of tumor-associated macrophages and their role in the occurrence and development of cancer. It outlines how reprogramming macrophages towards an anti-tumor phenotype can improve the response to cancer therapy. Explore the intricate process of engineered nanoparticles serving as carriers for immunostimulatory molecules, activating macrophages to instigate an anti-tumor response. Finally, it summarizes several studies demonstrating targeting macrophages is a potential in preclinical cancer models. Several challenges must be addressed in developing effective macrophage-targeted therapies, such as the heterogeneity of macrophage subtypes and their plasticity. Further research is needed to understand the mechanisms underlying macrophage function in the tumor microenvironment and identify novel targets for macrophage-directed therapies. Targeting macrophages is a promising and innovative approach to improving cancer therapy and patient outcomes.
期刊介绍:
Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves.
The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.
The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.