系统发生树的瓦尔德空间基础

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jonas Lueg, Maryam K. Garba, Tom M. W. Nye, Stephan F. Huckemann
{"title":"系统发生树的瓦尔德空间基础","authors":"Jonas Lueg,&nbsp;Maryam K. Garba,&nbsp;Tom M. W. Nye,&nbsp;Stephan F. Huckemann","doi":"10.1112/jlms.12893","DOIUrl":null,"url":null,"abstract":"<p>Evolutionary relationships between species are represented by phylogenetic trees, but these relationships are subject to uncertainty due to the random nature of evolution. A geometry for the space of phylogenetic trees is necessary in order to properly quantify this uncertainty during the statistical analysis of collections of possible evolutionary trees inferred from biological data. Recently, the wald space has been introduced: a length space for trees which is a certain subset of the manifold of symmetric positive definite matrices. In this work, the wald space is introduced formally and its topology and structure is studied in detail. In particular, we show that wald space has the topology of a disjoint union of open cubes, it is contractible, and by careful characterisation of cube boundaries, we demonstrate that wald space is a Whitney stratified space of type (A). Imposing the metric induced by the affine invariant metric on symmetric positive definite matrices, we prove that wald space is a geodesic Riemann stratified space. A new numerical method is proposed and investigated for construction of geodesics, computation of Fréchet means and calculation of curvature in wald space. This work is intended to serve as a mathematical foundation for further geometric and statistical research on this space.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12893","citationCount":"0","resultStr":"{\"title\":\"Foundations of the wald space for phylogenetic trees\",\"authors\":\"Jonas Lueg,&nbsp;Maryam K. Garba,&nbsp;Tom M. W. Nye,&nbsp;Stephan F. Huckemann\",\"doi\":\"10.1112/jlms.12893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Evolutionary relationships between species are represented by phylogenetic trees, but these relationships are subject to uncertainty due to the random nature of evolution. A geometry for the space of phylogenetic trees is necessary in order to properly quantify this uncertainty during the statistical analysis of collections of possible evolutionary trees inferred from biological data. Recently, the wald space has been introduced: a length space for trees which is a certain subset of the manifold of symmetric positive definite matrices. In this work, the wald space is introduced formally and its topology and structure is studied in detail. In particular, we show that wald space has the topology of a disjoint union of open cubes, it is contractible, and by careful characterisation of cube boundaries, we demonstrate that wald space is a Whitney stratified space of type (A). Imposing the metric induced by the affine invariant metric on symmetric positive definite matrices, we prove that wald space is a geodesic Riemann stratified space. A new numerical method is proposed and investigated for construction of geodesics, computation of Fréchet means and calculation of curvature in wald space. This work is intended to serve as a mathematical foundation for further geometric and statistical research on this space.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12893\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12893\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12893","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

物种之间的进化关系由系统进化树表示,但由于进化的随机性,这些关系具有不确定性。为了在对从生物数据中推断出的可能进化树集合进行统计分析时正确量化这种不确定性,系统进化树空间的几何图形是必要的。最近,人们引入了瓦尔德空间(wald space):一种树的长度空间,它是对称正定矩阵流形的某个子集。在这项研究中,我们正式介绍了瓦尔德空间,并详细研究了其拓扑和结构。特别是,我们证明了瓦尔德空间具有开放立方体不相交联合的拓扑结构,它是可收缩的,并且通过对立方体边界的仔细描述,我们证明了瓦尔德空间是一个惠特尼分层空间(A)类型。在对称正定矩阵上施加仿射不变度量所诱导的度量,我们证明了瓦尔德空间是一个大地黎曼分层空间。我们提出并研究了一种新的数值方法,用于构建大地线、计算弗雷谢特均值和计算瓦尔德空间的曲率。这项工作旨在为该空间的进一步几何和统计研究奠定数学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Foundations of the wald space for phylogenetic trees

Foundations of the wald space for phylogenetic trees

Evolutionary relationships between species are represented by phylogenetic trees, but these relationships are subject to uncertainty due to the random nature of evolution. A geometry for the space of phylogenetic trees is necessary in order to properly quantify this uncertainty during the statistical analysis of collections of possible evolutionary trees inferred from biological data. Recently, the wald space has been introduced: a length space for trees which is a certain subset of the manifold of symmetric positive definite matrices. In this work, the wald space is introduced formally and its topology and structure is studied in detail. In particular, we show that wald space has the topology of a disjoint union of open cubes, it is contractible, and by careful characterisation of cube boundaries, we demonstrate that wald space is a Whitney stratified space of type (A). Imposing the metric induced by the affine invariant metric on symmetric positive definite matrices, we prove that wald space is a geodesic Riemann stratified space. A new numerical method is proposed and investigated for construction of geodesics, computation of Fréchet means and calculation of curvature in wald space. This work is intended to serve as a mathematical foundation for further geometric and statistical research on this space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信