中国大型气田烷烃气体碳同位素组成特征

IF 7 Q1 ENERGY & FUELS
Jinxing DAI , Yunyan NI , Deyu GONG , Shipeng HUANG , Quanyou LIU , Feng HONG , Yanling ZHANG
{"title":"中国大型气田烷烃气体碳同位素组成特征","authors":"Jinxing DAI ,&nbsp;Yunyan NI ,&nbsp;Deyu GONG ,&nbsp;Shipeng HUANG ,&nbsp;Quanyou LIU ,&nbsp;Feng HONG ,&nbsp;Yanling ZHANG","doi":"10.1016/S1876-3804(24)60021-2","DOIUrl":null,"url":null,"abstract":"<div><p>Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry. From 1991 to 2020, China discovered 68 new large gas fields, boosting its annual gas output to 1 925×10<sup>8</sup> m<sup>3</sup> in 2020, making it the fourth largest gas-producing country in the world. Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China, the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained. The lightest and average values of <em>δ</em><sup>13</sup>C<sub>1</sub>, <em>δ</em><sup>13</sup>C<sub>2</sub>, <em>δ</em><sup>13</sup>C<sub>3</sub> and <em>δ</em><sup>13</sup>C<sub>4</sub> become heavier with increasing carbon number, while the heaviest values of <em>δ</em><sup>13</sup>C<sub>1</sub>, <em>δ</em><sup>13</sup>C<sub>2</sub>, <em>δ</em><sup>13</sup>C<sub>3</sub> and <em>δ</em><sup>13</sup>C<sub>4</sub> become lighter with increasing carbon number. The <em>δ</em><sup>13</sup>C<sub>1</sub> values of large gas fields in China range from −71.2‰ to −11.4‰ (specifically, from −71.2‰ to −56.4‰ for bacterial gas, from −54.4‰ to −21.6‰ for oil-related gas, from −49.3‰ to −18.9‰ for coal-derived gas, and from −35.6‰ to −11.4‰ for abiogenic gas). Based on these data, the <em>δ</em><sup>13</sup>C<sub>1</sub> chart of large gas fields in China was plotted. Moreover, the <em>δ</em><sup>13</sup>C<sub>1</sub> values of natural gas in China range from −107.1‰ to −8.9‰, specifically, from −107.1‰ to −55.1‰ for bacterial gas, from −54.4‰ to −21.6‰ for oil-related gas, from −49.3‰ to −13.3‰ for coal-derived gas, and from −36.2‰ to −8.9‰ for abiogenic gas. Based on these data, the <em>δ</em><sup>13</sup>C<sub>1</sub> chart of natural gas in China was plotted.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 2","pages":"Pages 251-261"},"PeriodicalIF":7.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424600212/pdf?md5=9d3a4b376a9c513690317e970271cd51&pid=1-s2.0-S1876380424600212-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characteristics of carbon isotopic composition of alkane gas in large gas fields in China\",\"authors\":\"Jinxing DAI ,&nbsp;Yunyan NI ,&nbsp;Deyu GONG ,&nbsp;Shipeng HUANG ,&nbsp;Quanyou LIU ,&nbsp;Feng HONG ,&nbsp;Yanling ZHANG\",\"doi\":\"10.1016/S1876-3804(24)60021-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry. From 1991 to 2020, China discovered 68 new large gas fields, boosting its annual gas output to 1 925×10<sup>8</sup> m<sup>3</sup> in 2020, making it the fourth largest gas-producing country in the world. Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China, the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained. The lightest and average values of <em>δ</em><sup>13</sup>C<sub>1</sub>, <em>δ</em><sup>13</sup>C<sub>2</sub>, <em>δ</em><sup>13</sup>C<sub>3</sub> and <em>δ</em><sup>13</sup>C<sub>4</sub> become heavier with increasing carbon number, while the heaviest values of <em>δ</em><sup>13</sup>C<sub>1</sub>, <em>δ</em><sup>13</sup>C<sub>2</sub>, <em>δ</em><sup>13</sup>C<sub>3</sub> and <em>δ</em><sup>13</sup>C<sub>4</sub> become lighter with increasing carbon number. The <em>δ</em><sup>13</sup>C<sub>1</sub> values of large gas fields in China range from −71.2‰ to −11.4‰ (specifically, from −71.2‰ to −56.4‰ for bacterial gas, from −54.4‰ to −21.6‰ for oil-related gas, from −49.3‰ to −18.9‰ for coal-derived gas, and from −35.6‰ to −11.4‰ for abiogenic gas). Based on these data, the <em>δ</em><sup>13</sup>C<sub>1</sub> chart of large gas fields in China was plotted. Moreover, the <em>δ</em><sup>13</sup>C<sub>1</sub> values of natural gas in China range from −107.1‰ to −8.9‰, specifically, from −107.1‰ to −55.1‰ for bacterial gas, from −54.4‰ to −21.6‰ for oil-related gas, from −49.3‰ to −13.3‰ for coal-derived gas, and from −36.2‰ to −8.9‰ for abiogenic gas. Based on these data, the <em>δ</em><sup>13</sup>C<sub>1</sub> chart of natural gas in China was plotted.</p></div>\",\"PeriodicalId\":67426,\"journal\":{\"name\":\"Petroleum Exploration and Development\",\"volume\":\"51 2\",\"pages\":\"Pages 251-261\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1876380424600212/pdf?md5=9d3a4b376a9c513690317e970271cd51&pid=1-s2.0-S1876380424600212-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Exploration and Development\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876380424600212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380424600212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

勘探开发大型气田是一个国家快速发展天然气产业的重要途径。从 1991 年到 2020 年,中国新发现 68 个大型气田,2020 年天然气年产量将达到 1 925×108 立方米,成为世界第四大天然气生产国。基于中国 70 个大型气田烷烃气的 1696 个分子组分和碳同位素组成数据,得出了中国大型气田烷烃气的碳同位素组成特征。δ13C1、δ13C2、δ13C3和δ13C4的最轻值和平均值随碳数的增加而变重,δ13C1、δ13C2、δ13C3和δ13C4的最重值随碳数的增加而变轻。中国大型气田的δ13C1值范围为-71.2‰至-11.4‰(具体而言,细菌气为-71.2‰至-56.4‰,石油相关气为-54.4‰至-21.6‰,煤层气为-49.3‰至-18.9‰,非生物气为-35.6‰至-11.4‰)。根据这些数据,绘制了中国大型气田的 δ13C1 图。此外,中国天然气的δ13C1 值范围为-107.1‰至-8.9‰,具体而言,细菌气为-107.1‰至-55.1‰,石油相关气为-54.4‰至-21.6‰,煤制气为-49.3‰至-13.3‰,非生物气为-36.2‰至-8.9‰。根据这些数据,绘制了中国天然气δ13C1 图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristics of carbon isotopic composition of alkane gas in large gas fields in China

Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry. From 1991 to 2020, China discovered 68 new large gas fields, boosting its annual gas output to 1 925×108 m3 in 2020, making it the fourth largest gas-producing country in the world. Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China, the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained. The lightest and average values of δ13C1, δ13C2, δ13C3 and δ13C4 become heavier with increasing carbon number, while the heaviest values of δ13C1, δ13C2, δ13C3 and δ13C4 become lighter with increasing carbon number. The δ13C1 values of large gas fields in China range from −71.2‰ to −11.4‰ (specifically, from −71.2‰ to −56.4‰ for bacterial gas, from −54.4‰ to −21.6‰ for oil-related gas, from −49.3‰ to −18.9‰ for coal-derived gas, and from −35.6‰ to −11.4‰ for abiogenic gas). Based on these data, the δ13C1 chart of large gas fields in China was plotted. Moreover, the δ13C1 values of natural gas in China range from −107.1‰ to −8.9‰, specifically, from −107.1‰ to −55.1‰ for bacterial gas, from −54.4‰ to −21.6‰ for oil-related gas, from −49.3‰ to −13.3‰ for coal-derived gas, and from −36.2‰ to −8.9‰ for abiogenic gas. Based on these data, the δ13C1 chart of natural gas in China was plotted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信