Long Yang, Minlong Li, Jie Liu, Juan Zeng, Yanhui Lu
{"title":"谷类作物的长期扩展促进了多食性卷叶螟的区域种群增长","authors":"Long Yang, Minlong Li, Jie Liu, Juan Zeng, Yanhui Lu","doi":"10.1007/s10340-024-01778-x","DOIUrl":null,"url":null,"abstract":"<p>Changes in land use is an important driver of insect pest population dynamics, but the long-term effects of land use may be contingent on changes in some factors. To identify potential effects of change in cropping pattern on agricultural pest population trends, data from large temporal and spatial scales are needed but are rarely available. Here, we used long-term (15 years) pest monitoring data across a regional scale and across independent gradients of land-use intensity at the landscape level (61 agro-landscapes with a radius of 2.0 km), to investigate the effects of the expansion of area devoted to major cereal crops on population trends of polyphagous <i>Helicoverpa armigera</i> in northern China. We found that an increased proportion of the land planted to maize and wheat in the landscape had an indirectly positive effect on the activity density of the summer population of <i>H. armigera</i> by increasing the population density of the preceding spring generations. Stable carbon isotope analysis suggested that maize acted as the source habitat for <i>H. armigera</i> population in the growing season. At the regional level, long-term expansion of maize and wheat production, as well as the contraction of cotton area, was associated with an increased density of <i>H. armigera</i> in spring generations across years, although temperature and precipitation factors also had significant effects on pest population sizes. These results across both temporal and spatial scales indicated that, in addition to Bt cotton contraction, increased cereal crops cultivation was an important driver of the <i>H. armigera</i> population increases in recent decades in northern China.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term expansion of cereal crops promotes regional population increase of polyphagous Helicoverpa armigera\",\"authors\":\"Long Yang, Minlong Li, Jie Liu, Juan Zeng, Yanhui Lu\",\"doi\":\"10.1007/s10340-024-01778-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Changes in land use is an important driver of insect pest population dynamics, but the long-term effects of land use may be contingent on changes in some factors. To identify potential effects of change in cropping pattern on agricultural pest population trends, data from large temporal and spatial scales are needed but are rarely available. Here, we used long-term (15 years) pest monitoring data across a regional scale and across independent gradients of land-use intensity at the landscape level (61 agro-landscapes with a radius of 2.0 km), to investigate the effects of the expansion of area devoted to major cereal crops on population trends of polyphagous <i>Helicoverpa armigera</i> in northern China. We found that an increased proportion of the land planted to maize and wheat in the landscape had an indirectly positive effect on the activity density of the summer population of <i>H. armigera</i> by increasing the population density of the preceding spring generations. Stable carbon isotope analysis suggested that maize acted as the source habitat for <i>H. armigera</i> population in the growing season. At the regional level, long-term expansion of maize and wheat production, as well as the contraction of cotton area, was associated with an increased density of <i>H. armigera</i> in spring generations across years, although temperature and precipitation factors also had significant effects on pest population sizes. These results across both temporal and spatial scales indicated that, in addition to Bt cotton contraction, increased cereal crops cultivation was an important driver of the <i>H. armigera</i> population increases in recent decades in northern China.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01778-x\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01778-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
土地利用的变化是虫害种群动态的重要驱动因素,但土地利用的长期影响可能取决于某些因素的变化。要确定种植模式的变化对农业害虫种群趋势的潜在影响,需要大时空尺度的数据,但目前很少有这种数据。在此,我们使用了跨区域尺度和跨景观水平(半径为 2.0 千米的 61 个农业景观)土地利用强度独立梯度的长期(15 年)害虫监测数据,研究了中国北方主要谷类作物种植面积扩大对多食性害虫 Helicoverpa armigera 种群趋势的影响。我们发现,玉米和小麦种植面积比例的增加,通过提高春季前几代的种群密度,间接地对胡蜂虫夏季种群的活动密度产生了积极影响。稳定碳同位素分析表明,玉米在生长季节是 H. armigera 种群的源栖息地。在区域层面上,玉米和小麦生产的长期扩张以及棉花面积的缩小与春季世代 H. armigera 的密度跨年度增加有关,尽管温度和降水因素对害虫种群数量也有显著影响。这些跨时空尺度的研究结果表明,除了Bt棉花面积缩减之外,谷物种植面积的增加也是近几十年来中国北方棉铃虫种群数量增加的重要驱动因素。
Long-term expansion of cereal crops promotes regional population increase of polyphagous Helicoverpa armigera
Changes in land use is an important driver of insect pest population dynamics, but the long-term effects of land use may be contingent on changes in some factors. To identify potential effects of change in cropping pattern on agricultural pest population trends, data from large temporal and spatial scales are needed but are rarely available. Here, we used long-term (15 years) pest monitoring data across a regional scale and across independent gradients of land-use intensity at the landscape level (61 agro-landscapes with a radius of 2.0 km), to investigate the effects of the expansion of area devoted to major cereal crops on population trends of polyphagous Helicoverpa armigera in northern China. We found that an increased proportion of the land planted to maize and wheat in the landscape had an indirectly positive effect on the activity density of the summer population of H. armigera by increasing the population density of the preceding spring generations. Stable carbon isotope analysis suggested that maize acted as the source habitat for H. armigera population in the growing season. At the regional level, long-term expansion of maize and wheat production, as well as the contraction of cotton area, was associated with an increased density of H. armigera in spring generations across years, although temperature and precipitation factors also had significant effects on pest population sizes. These results across both temporal and spatial scales indicated that, in addition to Bt cotton contraction, increased cereal crops cultivation was an important driver of the H. armigera population increases in recent decades in northern China.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.