Anke Van Roy, Geneviève Albouy, Ryan D. Burns, Bradley R. King
{"title":"儿童在离线处理已学动作序列时表现出发育优势","authors":"Anke Van Roy, Geneviève Albouy, Ryan D. Burns, Bradley R. King","doi":"10.1038/s44271-024-00082-9","DOIUrl":null,"url":null,"abstract":"Changes in specific behaviors across the lifespan are frequently reported as an inverted-U trajectory. That is, young adults exhibit optimal performance, children are conceptualized as developing systems progressing towards this ideal state, and older adulthood is characterized by performance decrements. However, not all behaviors follow this trajectory, as there are instances in which children outperform young adults. Here, we acquired data from 7–35 and >55 year-old participants and assessed potential developmental advantages in motor sequence learning and memory consolidation. Results revealed no credible evidence for differences in initial learning dynamics among age groups, but 7- to 12-year-old children exhibited smaller sequence-specific learning relative to adolescents, young adults and older adults. Interestingly, children demonstrated the greatest performance gains across the 5 h and 24 h offline periods, reflecting enhanced motor memory consolidation. These results suggest that children exhibit an advantage in the offline processing of recently learned motor sequences. Seven to 12 year-old children showed greater performance gains on a motor sequence task across post-learning resting periods than adolescents, young adults and older adults, suggesting a developmental advantage in offline motor memory consolidation.","PeriodicalId":501698,"journal":{"name":"Communications Psychology","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44271-024-00082-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Children exhibit a developmental advantage in the offline processing of a learned motor sequence\",\"authors\":\"Anke Van Roy, Geneviève Albouy, Ryan D. Burns, Bradley R. King\",\"doi\":\"10.1038/s44271-024-00082-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Changes in specific behaviors across the lifespan are frequently reported as an inverted-U trajectory. That is, young adults exhibit optimal performance, children are conceptualized as developing systems progressing towards this ideal state, and older adulthood is characterized by performance decrements. However, not all behaviors follow this trajectory, as there are instances in which children outperform young adults. Here, we acquired data from 7–35 and >55 year-old participants and assessed potential developmental advantages in motor sequence learning and memory consolidation. Results revealed no credible evidence for differences in initial learning dynamics among age groups, but 7- to 12-year-old children exhibited smaller sequence-specific learning relative to adolescents, young adults and older adults. Interestingly, children demonstrated the greatest performance gains across the 5 h and 24 h offline periods, reflecting enhanced motor memory consolidation. These results suggest that children exhibit an advantage in the offline processing of recently learned motor sequences. Seven to 12 year-old children showed greater performance gains on a motor sequence task across post-learning resting periods than adolescents, young adults and older adults, suggesting a developmental advantage in offline motor memory consolidation.\",\"PeriodicalId\":501698,\"journal\":{\"name\":\"Communications Psychology\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44271-024-00082-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44271-024-00082-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Psychology","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44271-024-00082-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Children exhibit a developmental advantage in the offline processing of a learned motor sequence
Changes in specific behaviors across the lifespan are frequently reported as an inverted-U trajectory. That is, young adults exhibit optimal performance, children are conceptualized as developing systems progressing towards this ideal state, and older adulthood is characterized by performance decrements. However, not all behaviors follow this trajectory, as there are instances in which children outperform young adults. Here, we acquired data from 7–35 and >55 year-old participants and assessed potential developmental advantages in motor sequence learning and memory consolidation. Results revealed no credible evidence for differences in initial learning dynamics among age groups, but 7- to 12-year-old children exhibited smaller sequence-specific learning relative to adolescents, young adults and older adults. Interestingly, children demonstrated the greatest performance gains across the 5 h and 24 h offline periods, reflecting enhanced motor memory consolidation. These results suggest that children exhibit an advantage in the offline processing of recently learned motor sequences. Seven to 12 year-old children showed greater performance gains on a motor sequence task across post-learning resting periods than adolescents, young adults and older adults, suggesting a developmental advantage in offline motor memory consolidation.