ECMpy 2.0:用于自动构建和分析酶约束模型的 Python 软件包

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhitao Mao , Jinhui Niu , Jianxiao Zhao , Yuanyuan Huang , Ke Wu , Liyuan Yun , Jirun Guan , Qianqian Yuan , Xiaoping Liao , Zhiwen Wang , Hongwu Ma
{"title":"ECMpy 2.0:用于自动构建和分析酶约束模型的 Python 软件包","authors":"Zhitao Mao ,&nbsp;Jinhui Niu ,&nbsp;Jianxiao Zhao ,&nbsp;Yuanyuan Huang ,&nbsp;Ke Wu ,&nbsp;Liyuan Yun ,&nbsp;Jirun Guan ,&nbsp;Qianqian Yuan ,&nbsp;Xiaoping Liao ,&nbsp;Zhiwen Wang ,&nbsp;Hongwu Ma","doi":"10.1016/j.synbio.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Genome-scale metabolic models (GEMs) have been widely employed to predict microorganism behaviors. However, GEMs only consider stoichiometric constraints, leading to a linear increase in simulated growth and product yields as substrate uptake rates rise. This divergence from experimental measurements prompted the creation of enzyme-constrained models (ecModels) for various species, successfully enhancing chemical production. Building upon studies that allocate macromolecule resources, we developed a Python-based workflow (ECMpy) that constructs an enzyme-constrained model. This involves directly imposing an enzyme amount constraint in GEM and accounting for protein subunit composition in reactions. However, this procedure demands manual collection of enzyme kinetic parameter information and subunit composition details, making it rather user-unfriendly. In this work, we've enhanced the ECMpy toolbox to version 2.0, broadening its scope to automatically generate ecGEMs for a wider array of organisms. ECMpy 2.0 automates the retrieval of enzyme kinetic parameters and employs machine learning for predicting these parameters, which significantly enhances parameter coverage. Additionally, ECMpy 2.0 introduces common analytical and visualization features for ecModels, rendering computational results more user accessible. Furthermore, ECMpy 2.0 seamlessly integrates three published algorithms that exploit ecModels to uncover potential targets for metabolic engineering. ECMpy 2.0 is available at <span>https://github.com/tibbdc/ECMpy</span><svg><path></path></svg> or as a pip package (<span>https://pypi.org/project/ECMpy/</span><svg><path></path></svg>).</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"9 3","pages":"Pages 494-502"},"PeriodicalIF":4.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X24000565/pdfft?md5=839e65c709bae41e81ef9c3792abde80&pid=1-s2.0-S2405805X24000565-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ECMpy 2.0: A Python package for automated construction and analysis of enzyme-constrained models\",\"authors\":\"Zhitao Mao ,&nbsp;Jinhui Niu ,&nbsp;Jianxiao Zhao ,&nbsp;Yuanyuan Huang ,&nbsp;Ke Wu ,&nbsp;Liyuan Yun ,&nbsp;Jirun Guan ,&nbsp;Qianqian Yuan ,&nbsp;Xiaoping Liao ,&nbsp;Zhiwen Wang ,&nbsp;Hongwu Ma\",\"doi\":\"10.1016/j.synbio.2024.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Genome-scale metabolic models (GEMs) have been widely employed to predict microorganism behaviors. However, GEMs only consider stoichiometric constraints, leading to a linear increase in simulated growth and product yields as substrate uptake rates rise. This divergence from experimental measurements prompted the creation of enzyme-constrained models (ecModels) for various species, successfully enhancing chemical production. Building upon studies that allocate macromolecule resources, we developed a Python-based workflow (ECMpy) that constructs an enzyme-constrained model. This involves directly imposing an enzyme amount constraint in GEM and accounting for protein subunit composition in reactions. However, this procedure demands manual collection of enzyme kinetic parameter information and subunit composition details, making it rather user-unfriendly. In this work, we've enhanced the ECMpy toolbox to version 2.0, broadening its scope to automatically generate ecGEMs for a wider array of organisms. ECMpy 2.0 automates the retrieval of enzyme kinetic parameters and employs machine learning for predicting these parameters, which significantly enhances parameter coverage. Additionally, ECMpy 2.0 introduces common analytical and visualization features for ecModels, rendering computational results more user accessible. Furthermore, ECMpy 2.0 seamlessly integrates three published algorithms that exploit ecModels to uncover potential targets for metabolic engineering. ECMpy 2.0 is available at <span>https://github.com/tibbdc/ECMpy</span><svg><path></path></svg> or as a pip package (<span>https://pypi.org/project/ECMpy/</span><svg><path></path></svg>).</p></div>\",\"PeriodicalId\":22148,\"journal\":{\"name\":\"Synthetic and Systems Biotechnology\",\"volume\":\"9 3\",\"pages\":\"Pages 494-502\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000565/pdfft?md5=839e65c709bae41e81ef9c3792abde80&pid=1-s2.0-S2405805X24000565-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic and Systems Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405805X24000565\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X24000565","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因组尺度代谢模型(GEM)已被广泛用于预测微生物行为。然而,GEMs 只考虑了化学计量约束,导致随着底物吸收率的提高,模拟生长和产物产量呈线性增长。这种与实验测量结果的偏差促使人们为各种物种创建了酶约束模型(ecModels),成功地提高了化学生产。在分配大分子资源研究的基础上,我们开发了一种基于 Python 的工作流程 (ECMpy),用于构建酶约束模型。这包括在 GEM 中直接施加酶量约束,并在反应中考虑蛋白质亚基的组成。然而,这一过程需要手动收集酶动力学参数信息和亚基组成细节,因此对用户相当不友好。在这项工作中,我们将 ECMpy 工具箱增强到了 2.0 版,扩大了其范围,以便为更多生物自动生成 ecGEM。ECMpy 2.0 自动检索酶动力学参数,并采用机器学习方法预测这些参数,从而大大提高了参数覆盖率。此外,ECMpy 2.0 还为 ecModels 引入了通用分析和可视化功能,使计算结果更易于用户访问。此外,ECMpy 2.0 无缝集成了三种已发布的算法,利用 ecModels 发现代谢工程的潜在目标。ECMpy 2.0 可通过 https://github.com/tibbdc/ECMpy 或 pip 包 (https://pypi.org/project/ECMpy/) 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECMpy 2.0: A Python package for automated construction and analysis of enzyme-constrained models

Genome-scale metabolic models (GEMs) have been widely employed to predict microorganism behaviors. However, GEMs only consider stoichiometric constraints, leading to a linear increase in simulated growth and product yields as substrate uptake rates rise. This divergence from experimental measurements prompted the creation of enzyme-constrained models (ecModels) for various species, successfully enhancing chemical production. Building upon studies that allocate macromolecule resources, we developed a Python-based workflow (ECMpy) that constructs an enzyme-constrained model. This involves directly imposing an enzyme amount constraint in GEM and accounting for protein subunit composition in reactions. However, this procedure demands manual collection of enzyme kinetic parameter information and subunit composition details, making it rather user-unfriendly. In this work, we've enhanced the ECMpy toolbox to version 2.0, broadening its scope to automatically generate ecGEMs for a wider array of organisms. ECMpy 2.0 automates the retrieval of enzyme kinetic parameters and employs machine learning for predicting these parameters, which significantly enhances parameter coverage. Additionally, ECMpy 2.0 introduces common analytical and visualization features for ecModels, rendering computational results more user accessible. Furthermore, ECMpy 2.0 seamlessly integrates three published algorithms that exploit ecModels to uncover potential targets for metabolic engineering. ECMpy 2.0 is available at https://github.com/tibbdc/ECMpy or as a pip package (https://pypi.org/project/ECMpy/).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic and Systems Biotechnology
Synthetic and Systems Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
6.90
自引率
12.50%
发文量
90
审稿时长
67 days
期刊介绍: Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信