Andreas H. Franz, Nataliya M. Samoshina, Vyacheslav V. Samoshin
{"title":"利用 1H 和 31P NMR 光谱对脂质体中的脂质成分进行相对和绝对定量的简便方法","authors":"Andreas H. Franz, Nataliya M. Samoshina, Vyacheslav V. Samoshin","doi":"10.1016/j.chemphyslip.2024.105395","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Liposomes are promising delivery systems for pharmaceutical applications and have been used in medicine in the recent past. Preparation of liposomes requires reliable characterization and quantification of the phospholipid components for which the traditional cumbersome molybdate method is used frequently. The objective was to improve relative and absolute quantification of lipid components from liposomes.</p></div><div><h3>Methods</h3><p>A reliable method for quantification of lipid composition in liposome formulations in the 1–10 μmol range with <sup>1</sup>H- and <sup>31</sup>P NMR spectroscopy at 600 MHz has been developed. The method is based on three crystalline small-molecule standards (Ph<sub>3</sub>PO<sub>4</sub>, (Tol)<sub>3</sub>PO<sub>4</sub>, and Ph<sub>3</sub>PO) in CDCl<sub>3</sub>.</p></div><div><h3>Results</h3><p>Excellent calibration linearity and chemical stability of the standards was observed. The method was tested in blind fashion on liposomes containing POPC, PEG-ceramide and a pH-sensitive <em>trans</em>-aminocyclohexanol-based amphiphile (TACH).<span><sup>1</sup></span> Relative quantification (percentage of components) as well as determination of absolute lipid amount was possible with excellent reproducibility with an average error of 5<!--> <!-->%. Quantification (triplicate) was accomplished in 15 min based on <sup>1</sup>H NMR and in 1 h based on <sup>31</sup>P NMR. Very little change in mixture composition was observed over multiple preparative steps.</p></div><div><h3>Conclusion</h3><p>Liposome preparations containing POPC, POPE, DOPC, DPPC, TACH, and PEG-ceramide can be reliably characterized and quantified by <sup>1</sup>H NMR and <sup>31</sup>P NMR spectroscopy at 600 MHz in the μmol range.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"261 ","pages":"Article 105395"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A convenient method for the relative and absolute quantification of lipid components in liposomes by 1H- and 31P NMR-spectroscopy\",\"authors\":\"Andreas H. Franz, Nataliya M. Samoshina, Vyacheslav V. Samoshin\",\"doi\":\"10.1016/j.chemphyslip.2024.105395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Liposomes are promising delivery systems for pharmaceutical applications and have been used in medicine in the recent past. Preparation of liposomes requires reliable characterization and quantification of the phospholipid components for which the traditional cumbersome molybdate method is used frequently. The objective was to improve relative and absolute quantification of lipid components from liposomes.</p></div><div><h3>Methods</h3><p>A reliable method for quantification of lipid composition in liposome formulations in the 1–10 μmol range with <sup>1</sup>H- and <sup>31</sup>P NMR spectroscopy at 600 MHz has been developed. The method is based on three crystalline small-molecule standards (Ph<sub>3</sub>PO<sub>4</sub>, (Tol)<sub>3</sub>PO<sub>4</sub>, and Ph<sub>3</sub>PO) in CDCl<sub>3</sub>.</p></div><div><h3>Results</h3><p>Excellent calibration linearity and chemical stability of the standards was observed. The method was tested in blind fashion on liposomes containing POPC, PEG-ceramide and a pH-sensitive <em>trans</em>-aminocyclohexanol-based amphiphile (TACH).<span><sup>1</sup></span> Relative quantification (percentage of components) as well as determination of absolute lipid amount was possible with excellent reproducibility with an average error of 5<!--> <!-->%. Quantification (triplicate) was accomplished in 15 min based on <sup>1</sup>H NMR and in 1 h based on <sup>31</sup>P NMR. Very little change in mixture composition was observed over multiple preparative steps.</p></div><div><h3>Conclusion</h3><p>Liposome preparations containing POPC, POPE, DOPC, DPPC, TACH, and PEG-ceramide can be reliably characterized and quantified by <sup>1</sup>H NMR and <sup>31</sup>P NMR spectroscopy at 600 MHz in the μmol range.</p></div>\",\"PeriodicalId\":275,\"journal\":{\"name\":\"Chemistry and Physics of Lipids\",\"volume\":\"261 \",\"pages\":\"Article 105395\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Physics of Lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009308424000203\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308424000203","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A convenient method for the relative and absolute quantification of lipid components in liposomes by 1H- and 31P NMR-spectroscopy
Objective
Liposomes are promising delivery systems for pharmaceutical applications and have been used in medicine in the recent past. Preparation of liposomes requires reliable characterization and quantification of the phospholipid components for which the traditional cumbersome molybdate method is used frequently. The objective was to improve relative and absolute quantification of lipid components from liposomes.
Methods
A reliable method for quantification of lipid composition in liposome formulations in the 1–10 μmol range with 1H- and 31P NMR spectroscopy at 600 MHz has been developed. The method is based on three crystalline small-molecule standards (Ph3PO4, (Tol)3PO4, and Ph3PO) in CDCl3.
Results
Excellent calibration linearity and chemical stability of the standards was observed. The method was tested in blind fashion on liposomes containing POPC, PEG-ceramide and a pH-sensitive trans-aminocyclohexanol-based amphiphile (TACH).1 Relative quantification (percentage of components) as well as determination of absolute lipid amount was possible with excellent reproducibility with an average error of 5 %. Quantification (triplicate) was accomplished in 15 min based on 1H NMR and in 1 h based on 31P NMR. Very little change in mixture composition was observed over multiple preparative steps.
Conclusion
Liposome preparations containing POPC, POPE, DOPC, DPPC, TACH, and PEG-ceramide can be reliably characterized and quantified by 1H NMR and 31P NMR spectroscopy at 600 MHz in the μmol range.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.