{"title":"巴兰坦和梅尔卡关于 6 不规则分区截断和的猜想的证明","authors":"Olivia X.M. Yao","doi":"10.1016/j.jcta.2024.105903","DOIUrl":null,"url":null,"abstract":"<div><p>In 2012, Andrews and Merca proved a truncated theorem on Euler's pentagonal number theorem. Their work has opened up a new study of truncated series. Recently, Ballantine and Merca posed a conjecture on infinite families of inequalities involving <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, which counts the number of 6-regular partitions of <em>n</em>. In this paper, we confirm Ballantine and Merca's conjecture on linear equalities of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> based on a formula of the number of partitions of <em>n</em> into parts not exceeding 3 due to Cayley.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105903"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of a conjecture of Ballantine and Merca on truncated sums of 6-regular partitions\",\"authors\":\"Olivia X.M. Yao\",\"doi\":\"10.1016/j.jcta.2024.105903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2012, Andrews and Merca proved a truncated theorem on Euler's pentagonal number theorem. Their work has opened up a new study of truncated series. Recently, Ballantine and Merca posed a conjecture on infinite families of inequalities involving <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, which counts the number of 6-regular partitions of <em>n</em>. In this paper, we confirm Ballantine and Merca's conjecture on linear equalities of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> based on a formula of the number of partitions of <em>n</em> into parts not exceeding 3 due to Cayley.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"206 \",\"pages\":\"Article 105903\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000426\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000426","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Proof of a conjecture of Ballantine and Merca on truncated sums of 6-regular partitions
In 2012, Andrews and Merca proved a truncated theorem on Euler's pentagonal number theorem. Their work has opened up a new study of truncated series. Recently, Ballantine and Merca posed a conjecture on infinite families of inequalities involving , which counts the number of 6-regular partitions of n. In this paper, we confirm Ballantine and Merca's conjecture on linear equalities of based on a formula of the number of partitions of n into parts not exceeding 3 due to Cayley.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.