Ilaria Baglivo, Gaetano Malgieri, Roy Martin Roop, Ian S. Barton, Xindan Wang, Veronica Russo, Luciano Pirone, Emilia M. Pedone, Paolo V. Pedone
{"title":"MucR 蛋白:三十年的研究发现了一种新的 H-NS 类蛋白","authors":"Ilaria Baglivo, Gaetano Malgieri, Roy Martin Roop, Ian S. Barton, Xindan Wang, Veronica Russo, Luciano Pirone, Emilia M. Pedone, Paolo V. Pedone","doi":"10.1111/mmi.15261","DOIUrl":null,"url":null,"abstract":"MucR belongs to a large protein family whose members regulate the expression of virulence and symbiosis genes in α-proteobacteria species. This protein and its homologs were initially studied as classical transcriptional regulators mostly involved in repression of target genes by binding their promoters. Very recent studies have led to the classification of MucR as a new type of Histone-like Nucleoid Structuring (H-NS) protein. Thus this review is an effort to put together a complete and unifying story demonstrating how genetic and biochemical findings on MucR suggested that this protein is not a classical transcriptional regulator, but functions as a novel type of H-NS-like protein, which binds AT-rich regions of genomic DNA and regulates gene expression.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"33 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MucR protein: Three decades of studies have led to the identification of a new H-NS-like protein\",\"authors\":\"Ilaria Baglivo, Gaetano Malgieri, Roy Martin Roop, Ian S. Barton, Xindan Wang, Veronica Russo, Luciano Pirone, Emilia M. Pedone, Paolo V. Pedone\",\"doi\":\"10.1111/mmi.15261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MucR belongs to a large protein family whose members regulate the expression of virulence and symbiosis genes in α-proteobacteria species. This protein and its homologs were initially studied as classical transcriptional regulators mostly involved in repression of target genes by binding their promoters. Very recent studies have led to the classification of MucR as a new type of Histone-like Nucleoid Structuring (H-NS) protein. Thus this review is an effort to put together a complete and unifying story demonstrating how genetic and biochemical findings on MucR suggested that this protein is not a classical transcriptional regulator, but functions as a novel type of H-NS-like protein, which binds AT-rich regions of genomic DNA and regulates gene expression.\",\"PeriodicalId\":19006,\"journal\":{\"name\":\"Molecular Microbiology\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mmi.15261\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15261","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
MucR 属于一个庞大的蛋白家族,其成员可调节α-蛋白细菌中毒力和共生基因的表达。这种蛋白质及其同源物最初是作为经典的转录调节因子进行研究的,主要通过结合启动子抑制目标基因。最近的研究将 MucR 归类为一种新型组蛋白样核结构蛋白(H-NS)。因此,这篇综述力图通过一个完整而统一的故事,说明有关 MucR 的遗传和生化研究结果是如何表明这种蛋白不是经典的转录调节因子,而是一种新型的类 H-NS 蛋白,它能结合基因组 DNA 中富含 AT 的区域并调节基因表达。
MucR protein: Three decades of studies have led to the identification of a new H-NS-like protein
MucR belongs to a large protein family whose members regulate the expression of virulence and symbiosis genes in α-proteobacteria species. This protein and its homologs were initially studied as classical transcriptional regulators mostly involved in repression of target genes by binding their promoters. Very recent studies have led to the classification of MucR as a new type of Histone-like Nucleoid Structuring (H-NS) protein. Thus this review is an effort to put together a complete and unifying story demonstrating how genetic and biochemical findings on MucR suggested that this protein is not a classical transcriptional regulator, but functions as a novel type of H-NS-like protein, which binds AT-rich regions of genomic DNA and regulates gene expression.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.