独立横轴的度数标准和稳定性

Pub Date : 2024-02-14 DOI:10.1002/jgt.23085
Penny Haxell, Ronen Wdowinski
{"title":"独立横轴的度数标准和稳定性","authors":"Penny Haxell,&nbsp;Ronen Wdowinski","doi":"10.1002/jgt.23085","DOIUrl":null,"url":null,"abstract":"<p>An <i>independent transversal</i> (IT) in a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with a given vertex partition <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> is an independent set of vertices of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> (i.e., it induces no edges), that consists of one vertex from each part (<i>block</i>) of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math>. Over the years, various criteria have been established that guarantee the existence of an IT, often given in terms of <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> being <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-<i>thick</i>, meaning all blocks have size at least <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>. One such result, obtained recently by Wanless and Wood, is based on the <i>maximum average block degree</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>max</mi>\n <mrow>\n <mo>{</mo>\n <mrow>\n <msub>\n <mo>∑</mo>\n <mrow>\n <mi>u</mi>\n <mo>∈</mo>\n <mi>U</mi>\n </mrow>\n </msub>\n <mi>d</mi>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <mo>∕</mo>\n <mo>∣</mo>\n <mi>U</mi>\n <mo>∣</mo>\n <mo>:</mo>\n <mi>U</mi>\n <mo>∈</mo>\n <mi>P</mi>\n </mrow>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})=\\max \\{{\\sum }_{u\\in U}d(u)\\unicode{x02215}| U| :U\\in {\\mathscr{P}}\\}$</annotation>\n </semantics></math>. They proved that if <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>∕</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})\\le t\\unicode{x02215}4$</annotation>\n </semantics></math> then an IT exists. Resolving a problem posed by Groenland, Kaiser, Treffers and Wales (who showed that the ratio 1/4 is best possible), here we give a full characterization of pairs <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>β</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(\\alpha ,\\beta )$</annotation>\n </semantics></math> such that the following holds for every <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation> $t\\gt 0$</annotation>\n </semantics></math>: whenever <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a graph with maximum degree <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>α</mi>\n <mi>t</mi>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\le \\alpha t$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n </mrow>\n <annotation> $t$</annotation>\n </semantics></math>-thick vertex partition of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>β</mi>\n <mi>t</mi>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})\\le \\beta t$</annotation>\n </semantics></math>, there exists an IT of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n </mrow>\n <annotation> ${\\mathscr{P}}$</annotation>\n </semantics></math>. Our proof makes use of another previously known criterion for the existence of ITs that involve the topological connectedness of the independence complex of graphs, and establishes a general technical theorem on the structure of graphs for which this parameter is bounded above by a known quantity. Our result interpolates between the criterion <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mo>,</mo>\n <mi>P</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>∕</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $b(G,{\\mathscr{P}})\\le t\\unicode{x02215}4$</annotation>\n </semantics></math> and the old and frequently applied theorem that if <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>≤</mo>\n <mi>t</mi>\n <mo>∕</mo>\n <mn>2</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(G)\\le t\\unicode{x02215}2$</annotation>\n </semantics></math> then an IT exists. Using the same approach, we also extend a theorem of Aharoni, Holzman, Howard and Sprüssel, by giving a stability version of the latter result.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23085","citationCount":"0","resultStr":"{\"title\":\"Degree criteria and stability for independent transversals\",\"authors\":\"Penny Haxell,&nbsp;Ronen Wdowinski\",\"doi\":\"10.1002/jgt.23085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An <i>independent transversal</i> (IT) in a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with a given vertex partition <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math> is an independent set of vertices of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> (i.e., it induces no edges), that consists of one vertex from each part (<i>block</i>) of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math>. Over the years, various criteria have been established that guarantee the existence of an IT, often given in terms of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math> being <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math>-<i>thick</i>, meaning all blocks have size at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math>. One such result, obtained recently by Wanless and Wood, is based on the <i>maximum average block degree</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>P</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>max</mi>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <msub>\\n <mo>∑</mo>\\n <mrow>\\n <mi>u</mi>\\n <mo>∈</mo>\\n <mi>U</mi>\\n </mrow>\\n </msub>\\n <mi>d</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>u</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>∕</mo>\\n <mo>∣</mo>\\n <mi>U</mi>\\n <mo>∣</mo>\\n <mo>:</mo>\\n <mi>U</mi>\\n <mo>∈</mo>\\n <mi>P</mi>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $b(G,{\\\\mathscr{P}})=\\\\max \\\\{{\\\\sum }_{u\\\\in U}d(u)\\\\unicode{x02215}| U| :U\\\\in {\\\\mathscr{P}}\\\\}$</annotation>\\n </semantics></math>. They proved that if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>P</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>≤</mo>\\n <mi>t</mi>\\n <mo>∕</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation> $b(G,{\\\\mathscr{P}})\\\\le t\\\\unicode{x02215}4$</annotation>\\n </semantics></math> then an IT exists. Resolving a problem posed by Groenland, Kaiser, Treffers and Wales (who showed that the ratio 1/4 is best possible), here we give a full characterization of pairs <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>α</mi>\\n <mo>,</mo>\\n <mi>β</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(\\\\alpha ,\\\\beta )$</annotation>\\n </semantics></math> such that the following holds for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation> $t\\\\gt 0$</annotation>\\n </semantics></math>: whenever <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a graph with maximum degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≤</mo>\\n <mi>α</mi>\\n <mi>t</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)\\\\le \\\\alpha t$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math> is a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $t$</annotation>\\n </semantics></math>-thick vertex partition of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>P</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>≤</mo>\\n <mi>β</mi>\\n <mi>t</mi>\\n </mrow>\\n <annotation> $b(G,{\\\\mathscr{P}})\\\\le \\\\beta t$</annotation>\\n </semantics></math>, there exists an IT of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with respect to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n </mrow>\\n <annotation> ${\\\\mathscr{P}}$</annotation>\\n </semantics></math>. Our proof makes use of another previously known criterion for the existence of ITs that involve the topological connectedness of the independence complex of graphs, and establishes a general technical theorem on the structure of graphs for which this parameter is bounded above by a known quantity. Our result interpolates between the criterion <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>b</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>P</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>≤</mo>\\n <mi>t</mi>\\n <mo>∕</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation> $b(G,{\\\\mathscr{P}})\\\\le t\\\\unicode{x02215}4$</annotation>\\n </semantics></math> and the old and frequently applied theorem that if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>≤</mo>\\n <mi>t</mi>\\n <mo>∕</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(G)\\\\le t\\\\unicode{x02215}2$</annotation>\\n </semantics></math> then an IT exists. Using the same approach, we also extend a theorem of Aharoni, Holzman, Howard and Sprüssel, by giving a stability version of the latter result.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23085\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有给定顶点分区 P ${mathscr{P}}$ 的图 G $G$ 中的独立横向(IT)是 G $G$ 的一个独立顶点集合(即它不引起任何边),它由 P ${\mathscr{P}}$ 的每个部分(块)的一个顶点组成。多年来,人们建立了各种标准来保证 IT 的存在,这些标准通常以 P ${mathscr{P}}$ 厚度为 t $t$ 的条件给出,即所有块的大小至少为 t $t$。其中一个结果是 Wanless 和 Wood 最近得到的,它基于最大平均块度 b ( G , P ) = max { ∑ u∈ U d ( u ) ∕ ∣ U ∣ : U∈ P }。 $b(G,{\mathscr{P}})=\max \{\{sum }_{u\in U}d(u)\unicode{x02215}| U| :U\in {\mathscr{P}}\}$ 。他们证明了如果 b ( G , P ) ≤ t ∕ 4 $b(G,{\mathscr{P}})\le t\unicode{x02215}4$ 则存在一个 IT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Degree criteria and stability for independent transversals

分享
查看原文
Degree criteria and stability for independent transversals

An independent transversal (IT) in a graph G $G$ with a given vertex partition P ${\mathscr{P}}$ is an independent set of vertices of G $G$ (i.e., it induces no edges), that consists of one vertex from each part (block) of P ${\mathscr{P}}$ . Over the years, various criteria have been established that guarantee the existence of an IT, often given in terms of P ${\mathscr{P}}$ being t $t$ -thick, meaning all blocks have size at least t $t$ . One such result, obtained recently by Wanless and Wood, is based on the maximum average block degree b ( G , P ) = max { u U d ( u ) U : U P } $b(G,{\mathscr{P}})=\max \{{\sum }_{u\in U}d(u)\unicode{x02215}| U| :U\in {\mathscr{P}}\}$ . They proved that if b ( G , P ) t 4 $b(G,{\mathscr{P}})\le t\unicode{x02215}4$ then an IT exists. Resolving a problem posed by Groenland, Kaiser, Treffers and Wales (who showed that the ratio 1/4 is best possible), here we give a full characterization of pairs ( α , β ) $(\alpha ,\beta )$ such that the following holds for every t > 0 $t\gt 0$ : whenever G $G$ is a graph with maximum degree Δ ( G ) α t ${\rm{\Delta }}(G)\le \alpha t$ , and P ${\mathscr{P}}$ is a t $t$ -thick vertex partition of G $G$ such that b ( G , P ) β t $b(G,{\mathscr{P}})\le \beta t$ , there exists an IT of G $G$ with respect to P ${\mathscr{P}}$ . Our proof makes use of another previously known criterion for the existence of ITs that involve the topological connectedness of the independence complex of graphs, and establishes a general technical theorem on the structure of graphs for which this parameter is bounded above by a known quantity. Our result interpolates between the criterion b ( G , P ) t 4 $b(G,{\mathscr{P}})\le t\unicode{x02215}4$ and the old and frequently applied theorem that if Δ ( G ) t 2 ${\rm{\Delta }}(G)\le t\unicode{x02215}2$ then an IT exists. Using the same approach, we also extend a theorem of Aharoni, Holzman, Howard and Sprüssel, by giving a stability version of the latter result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信