{"title":"关于稀疏随机图宽度的说明","authors":"Tuan Anh Do, Joshua Erde, Mihyun Kang","doi":"10.1002/jgt.23081","DOIUrl":null,"url":null,"abstract":"<p>In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $G(n,p)$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mfrac>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>ϵ</mi>\n </mrow>\n <mi>n</mi>\n </mfrac>\n </mrow>\n <annotation> $p=\\frac{1+\\epsilon }{n}$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation> $\\epsilon \\gt 0$</annotation>\n </semantics></math> constant. Our proofs avoid the use of black box results on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <annotation> $\\epsilon $</annotation>\n </semantics></math>. Finally, we also consider the width of the random graph in the <i>weakly supercritical regime</i>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\epsilon =o(1)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ϵ</mi>\n <mn>3</mn>\n </msup>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation> ${\\epsilon }^{3}n\\to \\infty $</annotation>\n </semantics></math>. In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $G(n,p)$</annotation>\n </semantics></math> as a function of <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <annotation> $\\epsilon $</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23081","citationCount":"0","resultStr":"{\"title\":\"A note on the width of sparse random graphs\",\"authors\":\"Tuan Anh Do, Joshua Erde, Mihyun Kang\",\"doi\":\"10.1002/jgt.23081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $G(n,p)$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mfrac>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>ϵ</mi>\\n </mrow>\\n <mi>n</mi>\\n </mfrac>\\n </mrow>\\n <annotation> $p=\\\\frac{1+\\\\epsilon }{n}$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation> $\\\\epsilon \\\\gt 0$</annotation>\\n </semantics></math> constant. Our proofs avoid the use of black box results on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <annotation> $\\\\epsilon $</annotation>\\n </semantics></math>. Finally, we also consider the width of the random graph in the <i>weakly supercritical regime</i>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\epsilon =o(1)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>ϵ</mi>\\n <mn>3</mn>\\n </msup>\\n <mi>n</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation> ${\\\\epsilon }^{3}n\\\\to \\\\infty $</annotation>\\n </semantics></math>. In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $G(n,p)$</annotation>\\n </semantics></math> as a function of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <annotation> $\\\\epsilon $</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本说明中,我们根据一些常用的宽度度量来考虑超临界随机图的宽度。当 p = 1 + ϵ n $p=\frac{1+\epsilon }{n}$ 为 ϵ > 0 $\epsilon \gt 0$ 常量时,我们给出了 Lee、Lee 和 Oum 以及 Perarnau 和 Serra 关于随机图 G ( n , p ) $G(n,p)$ 的秩宽度和树宽度的简短而直接的证明。我们的证明避免了使用关于巨分量在这一制度下的膨胀特性的黑箱结果,因此作为进一步的好处,我们得到了这些结果对 ϵ $\epsilon $ 的依赖性的明确约束。最后,我们还考虑了弱超临界状态下随机图的宽度,此时ϵ = o ( 1 ) $\epsilon =o(1)$ 且 ϵ 3 n → ∞ ${\epsilon }^{3}n\to \infty $ 。在这一机制中,我们确定 G ( n , p ) $G(n,p)$ 的秩宽和树宽为 n $n$ 和 ϵ $\epsilon $ 的函数,直到一个恒定的乘法因子。
In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph when for constant. Our proofs avoid the use of black box results on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on . Finally, we also consider the width of the random graph in the weakly supercritical regime, where and . In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of as a function of and .