关于稀疏随机图宽度的说明

IF 0.9 3区 数学 Q2 MATHEMATICS
Tuan Anh Do, Joshua Erde, Mihyun Kang
{"title":"关于稀疏随机图宽度的说明","authors":"Tuan Anh Do,&nbsp;Joshua Erde,&nbsp;Mihyun Kang","doi":"10.1002/jgt.23081","DOIUrl":null,"url":null,"abstract":"<p>In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $G(n,p)$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mfrac>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>ϵ</mi>\n </mrow>\n <mi>n</mi>\n </mfrac>\n </mrow>\n <annotation> $p=\\frac{1+\\epsilon }{n}$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation> $\\epsilon \\gt 0$</annotation>\n </semantics></math> constant. Our proofs avoid the use of black box results on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <annotation> $\\epsilon $</annotation>\n </semantics></math>. Finally, we also consider the width of the random graph in the <i>weakly supercritical regime</i>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mrow>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\epsilon =o(1)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ϵ</mi>\n <mn>3</mn>\n </msup>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation> ${\\epsilon }^{3}n\\to \\infty $</annotation>\n </semantics></math>. In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $G(n,p)$</annotation>\n </semantics></math> as a function of <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>ϵ</mi>\n </mrow>\n <annotation> $\\epsilon $</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 2","pages":"273-295"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23081","citationCount":"0","resultStr":"{\"title\":\"A note on the width of sparse random graphs\",\"authors\":\"Tuan Anh Do,&nbsp;Joshua Erde,&nbsp;Mihyun Kang\",\"doi\":\"10.1002/jgt.23081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $G(n,p)$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mfrac>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>ϵ</mi>\\n </mrow>\\n <mi>n</mi>\\n </mfrac>\\n </mrow>\\n <annotation> $p=\\\\frac{1+\\\\epsilon }{n}$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation> $\\\\epsilon \\\\gt 0$</annotation>\\n </semantics></math> constant. Our proofs avoid the use of black box results on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <annotation> $\\\\epsilon $</annotation>\\n </semantics></math>. Finally, we also consider the width of the random graph in the <i>weakly supercritical regime</i>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\epsilon =o(1)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>ϵ</mi>\\n <mn>3</mn>\\n </msup>\\n <mi>n</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation> ${\\\\epsilon }^{3}n\\\\to \\\\infty $</annotation>\\n </semantics></math>. In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $G(n,p)$</annotation>\\n </semantics></math> as a function of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n <annotation> $\\\\epsilon $</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 2\",\"pages\":\"273-295\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23081\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23081","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本说明中,我们根据一些常用的宽度度量来考虑超临界随机图的宽度。当 p = 1 + ϵ n $p=\frac{1+\epsilon }{n}$ 为 ϵ > 0 $\epsilon \gt 0$ 常量时,我们给出了 Lee、Lee 和 Oum 以及 Perarnau 和 Serra 关于随机图 G ( n , p ) $G(n,p)$ 的秩宽度和树宽度的简短而直接的证明。我们的证明避免了使用关于巨分量在这一制度下的膨胀特性的黑箱结果,因此作为进一步的好处,我们得到了这些结果对 ϵ $\epsilon $ 的依赖性的明确约束。最后,我们还考虑了弱超临界状态下随机图的宽度,此时ϵ = o ( 1 ) $\epsilon =o(1)$ 且 ϵ 3 n → ∞ ${\epsilon }^{3}n\to \infty $ 。在这一机制中,我们确定 G ( n , p ) $G(n,p)$ 的秩宽和树宽为 n $n$ 和 ϵ $\epsilon $ 的函数,直到一个恒定的乘法因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A note on the width of sparse random graphs

A note on the width of sparse random graphs

In this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank- and tree-width of the random graph G ( n , p ) $G(n,p)$ when p = 1 + ϵ n $p=\frac{1+\epsilon }{n}$ for ϵ > 0 $\epsilon \gt 0$ constant. Our proofs avoid the use of black box results on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on ϵ $\epsilon $ . Finally, we also consider the width of the random graph in the weakly supercritical regime, where ϵ = o ( 1 ) $\epsilon =o(1)$ and ϵ 3 n ${\epsilon }^{3}n\to \infty $ . In this regime, we determine, up to a constant multiplicative factor, the rank- and tree-width of G ( n , p ) $G(n,p)$ as a function of n $n$ and ϵ $\epsilon $ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信