图的复流数下限:几何方法

IF 0.9 3区 数学 Q2 MATHEMATICS
Davide Mattiolo, Giuseppe Mazzuoccolo, Jozef Rajník, Gloria Tabarelli
{"title":"图的复流数下限:几何方法","authors":"Davide Mattiolo,&nbsp;Giuseppe Mazzuoccolo,&nbsp;Jozef Rajník,&nbsp;Gloria Tabarelli","doi":"10.1002/jgt.23075","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $r\\ge 2$</annotation>\n </semantics></math> be a real number. A complex nowhere-zero <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow on a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is an orientation of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> together with an assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>:</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>C</mi>\n </mrow>\n <annotation> $\\varphi :E(G)\\to {\\mathbb{C}}$</annotation>\n </semantics></math> such that, for all <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>∈</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e\\in E(G)$</annotation>\n </semantics></math>, the Euclidean norm of the complex number <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mrow>\n <mo>(</mo>\n <mi>e</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\varphi (e)$</annotation>\n </semantics></math> lies in the interval <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>r</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>]</mo>\n </mrow>\n <annotation> $[1,r-1]$</annotation>\n </semantics></math> and, for every vertex, the incoming flow is equal to the outgoing flow. The complex flow number of a bridgeless graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}(G)$</annotation>\n </semantics></math>, is the minimum of the real numbers <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> admits a complex nowhere-zero <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow. The exact computation of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}$</annotation>\n </semantics></math> seems to be a hard task even for very small and symmetric graphs. In particular, the exact value of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}$</annotation>\n </semantics></math> is known only for families of graphs where a lower bound can be trivially proved. Here, we use geometric and combinatorial arguments to give a nontrivial lower bound for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}(G)$</annotation>\n </semantics></math> in terms of the odd-girth of a cubic graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> (i.e., the length of a shortest odd cycle) and we show that this lower bound is tight. This result relies on the exact computation of the complex flow number of the wheel graph <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>W</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation> ${W}_{n}$</annotation>\n </semantics></math>. In particular, we show that for every odd <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, the value of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>W</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}({W}_{n})$</annotation>\n </semantics></math> arises from one of three suitable configurations of points in the complex plane according to the congruence of <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> modulo 6.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lower bound for the complex flow number of a graph: A geometric approach\",\"authors\":\"Davide Mattiolo,&nbsp;Giuseppe Mazzuoccolo,&nbsp;Jozef Rajník,&nbsp;Gloria Tabarelli\",\"doi\":\"10.1002/jgt.23075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $r\\\\ge 2$</annotation>\\n </semantics></math> be a real number. A complex nowhere-zero <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-flow on a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is an orientation of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> together with an assignment <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mo>:</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mi>C</mi>\\n </mrow>\\n <annotation> $\\\\varphi :E(G)\\\\to {\\\\mathbb{C}}$</annotation>\\n </semantics></math> such that, for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <mo>∈</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $e\\\\in E(G)$</annotation>\\n </semantics></math>, the Euclidean norm of the complex number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>e</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\varphi (e)$</annotation>\\n </semantics></math> lies in the interval <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n <annotation> $[1,r-1]$</annotation>\\n </semantics></math> and, for every vertex, the incoming flow is equal to the outgoing flow. The complex flow number of a bridgeless graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>C</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\phi }_{{\\\\mathbb{C}}}(G)$</annotation>\\n </semantics></math>, is the minimum of the real numbers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> admits a complex nowhere-zero <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-flow. The exact computation of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>C</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\phi }_{{\\\\mathbb{C}}}$</annotation>\\n </semantics></math> seems to be a hard task even for very small and symmetric graphs. In particular, the exact value of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>C</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\phi }_{{\\\\mathbb{C}}}$</annotation>\\n </semantics></math> is known only for families of graphs where a lower bound can be trivially proved. Here, we use geometric and combinatorial arguments to give a nontrivial lower bound for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>C</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\phi }_{{\\\\mathbb{C}}}(G)$</annotation>\\n </semantics></math> in terms of the odd-girth of a cubic graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> (i.e., the length of a shortest odd cycle) and we show that this lower bound is tight. This result relies on the exact computation of the complex flow number of the wheel graph <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>W</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation> ${W}_{n}$</annotation>\\n </semantics></math>. In particular, we show that for every odd <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, the value of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>C</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>W</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\phi }_{{\\\\mathbb{C}}}({W}_{n})$</annotation>\\n </semantics></math> arises from one of three suitable configurations of points in the complex plane according to the congruence of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> modulo 6.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23075\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 r ≥ 2 $r\ge 2$ 为实数。图 G $G$ 上的复数无处-零 r $r$ -流是 G $G$ 的一个取向以及一个赋值 φ : E ( G ) → C $\varphi :E(G)\to {\mathbb{C}}$ ,这样,对于所有 e∈ E ( G ) $e\in E(G)$ ,复数 φ ( e ) $\varphi (e)$ 的欧氏规范位于区间 [ 1 , r - 1 ]。 $[1,r-1]$ 并且,对于每个顶点,流入流量等于流出流量。无桥图 G $G$ 的复流数用 ϕ C ( G ) ${\phi }_{{\mathbb{C}}}(G)$ 表示,是实数 r $r$ 中的最小值,使得 G $G$ 可以容纳无处为零的复 r $r$ 流。即使对于非常小的对称图,精确计算 ϕ C ${\phi }_{\mathbb{C}}$ 似乎也是一项艰巨的任务。特别是,j C ${\phi }_{\mathbb{C}}$的精确值只有在可以微不足道地证明下界的图族中才是已知的。在这里,我们利用几何和组合论证,以立方图 G $G$ 的奇数周长(即最短奇数周期的长度)为单位,给出了 ϕ C ( G ) ${\phi }_{\mathbb{C}}(G)$ 的非微不足道的下界,并证明这个下界是严密的。这一结果依赖于车轮图 W n ${W}_{n}$ 复流数的精确计算。特别是,我们证明了对于每一个奇数 n $n$ ,ϕ C ( W n ) ${\phi }_{{\mathbb{C}}}({W}_{n})$ 的值产生于复数平面中根据 n $n$ modulo 6 的同余式的三个合适配置点之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A lower bound for the complex flow number of a graph: A geometric approach

Let r 2 $r\ge 2$ be a real number. A complex nowhere-zero r $r$ -flow on a graph G $G$ is an orientation of G $G$ together with an assignment φ : E ( G ) C $\varphi :E(G)\to {\mathbb{C}}$ such that, for all e E ( G ) $e\in E(G)$ , the Euclidean norm of the complex number φ ( e ) $\varphi (e)$ lies in the interval [ 1 , r 1 ] $[1,r-1]$ and, for every vertex, the incoming flow is equal to the outgoing flow. The complex flow number of a bridgeless graph G $G$ , denoted by ϕ C ( G ) ${\phi }_{{\mathbb{C}}}(G)$ , is the minimum of the real numbers r $r$ such that G $G$ admits a complex nowhere-zero r $r$ -flow. The exact computation of ϕ C ${\phi }_{{\mathbb{C}}}$ seems to be a hard task even for very small and symmetric graphs. In particular, the exact value of ϕ C ${\phi }_{{\mathbb{C}}}$ is known only for families of graphs where a lower bound can be trivially proved. Here, we use geometric and combinatorial arguments to give a nontrivial lower bound for ϕ C ( G ) ${\phi }_{{\mathbb{C}}}(G)$ in terms of the odd-girth of a cubic graph G $G$ (i.e., the length of a shortest odd cycle) and we show that this lower bound is tight. This result relies on the exact computation of the complex flow number of the wheel graph W n ${W}_{n}$ . In particular, we show that for every odd n $n$ , the value of ϕ C ( W n ) ${\phi }_{{\mathbb{C}}}({W}_{n})$ arises from one of three suitable configurations of points in the complex plane according to the congruence of n $n$ modulo 6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信