Davide Mattiolo, Giuseppe Mazzuoccolo, Jozef Rajník, Gloria Tabarelli
{"title":"图的复流数下限:几何方法","authors":"Davide Mattiolo, Giuseppe Mazzuoccolo, Jozef Rajník, Gloria Tabarelli","doi":"10.1002/jgt.23075","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $r\\ge 2$</annotation>\n </semantics></math> be a real number. A complex nowhere-zero <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow on a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is an orientation of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> together with an assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>:</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>C</mi>\n </mrow>\n <annotation> $\\varphi :E(G)\\to {\\mathbb{C}}$</annotation>\n </semantics></math> such that, for all <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>∈</mo>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $e\\in E(G)$</annotation>\n </semantics></math>, the Euclidean norm of the complex number <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mrow>\n <mo>(</mo>\n <mi>e</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\varphi (e)$</annotation>\n </semantics></math> lies in the interval <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>r</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>]</mo>\n </mrow>\n <annotation> $[1,r-1]$</annotation>\n </semantics></math> and, for every vertex, the incoming flow is equal to the outgoing flow. The complex flow number of a bridgeless graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}(G)$</annotation>\n </semantics></math>, is the minimum of the real numbers <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> admits a complex nowhere-zero <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n </mrow>\n <annotation> $r$</annotation>\n </semantics></math>-flow. The exact computation of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}$</annotation>\n </semantics></math> seems to be a hard task even for very small and symmetric graphs. In particular, the exact value of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}$</annotation>\n </semantics></math> is known only for families of graphs where a lower bound can be trivially proved. Here, we use geometric and combinatorial arguments to give a nontrivial lower bound for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}(G)$</annotation>\n </semantics></math> in terms of the odd-girth of a cubic graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> (i.e., the length of a shortest odd cycle) and we show that this lower bound is tight. This result relies on the exact computation of the complex flow number of the wheel graph <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>W</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation> ${W}_{n}$</annotation>\n </semantics></math>. In particular, we show that for every odd <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, the value of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϕ</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>W</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\phi }_{{\\mathbb{C}}}({W}_{n})$</annotation>\n </semantics></math> arises from one of three suitable configurations of points in the complex plane according to the congruence of <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> modulo 6.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 2","pages":"239-256"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lower bound for the complex flow number of a graph: A geometric approach\",\"authors\":\"Davide Mattiolo, Giuseppe Mazzuoccolo, Jozef Rajník, Gloria Tabarelli\",\"doi\":\"10.1002/jgt.23075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $r\\\\ge 2$</annotation>\\n </semantics></math> be a real number. A complex nowhere-zero <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-flow on a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is an orientation of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> together with an assignment <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mo>:</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mi>C</mi>\\n </mrow>\\n <annotation> $\\\\varphi :E(G)\\\\to {\\\\mathbb{C}}$</annotation>\\n </semantics></math> such that, for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <mo>∈</mo>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $e\\\\in E(G)$</annotation>\\n </semantics></math>, the Euclidean norm of the complex number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>e</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\varphi (e)$</annotation>\\n </semantics></math> lies in the interval <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>r</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n <annotation> $[1,r-1]$</annotation>\\n </semantics></math> and, for every vertex, the incoming flow is equal to the outgoing flow. The complex flow number of a bridgeless graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>C</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\phi }_{{\\\\mathbb{C}}}(G)$</annotation>\\n </semantics></math>, is the minimum of the real numbers <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math> such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> admits a complex nowhere-zero <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n <annotation> $r$</annotation>\\n </semantics></math>-flow. The exact computation of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>C</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\phi }_{{\\\\mathbb{C}}}$</annotation>\\n </semantics></math> seems to be a hard task even for very small and symmetric graphs. In particular, the exact value of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>C</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\phi }_{{\\\\mathbb{C}}}$</annotation>\\n </semantics></math> is known only for families of graphs where a lower bound can be trivially proved. Here, we use geometric and combinatorial arguments to give a nontrivial lower bound for <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>C</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\phi }_{{\\\\mathbb{C}}}(G)$</annotation>\\n </semantics></math> in terms of the odd-girth of a cubic graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> (i.e., the length of a shortest odd cycle) and we show that this lower bound is tight. This result relies on the exact computation of the complex flow number of the wheel graph <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>W</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation> ${W}_{n}$</annotation>\\n </semantics></math>. In particular, we show that for every odd <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, the value of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ϕ</mi>\\n <mi>C</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>W</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\phi }_{{\\\\mathbb{C}}}({W}_{n})$</annotation>\\n </semantics></math> arises from one of three suitable configurations of points in the complex plane according to the congruence of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> modulo 6.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 2\",\"pages\":\"239-256\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23075\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23075","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 r ≥ 2 $r\ge 2$ 为实数。图 G $G$ 上的复数无处-零 r $r$ -流是 G $G$ 的一个取向以及一个赋值 φ : E ( G ) → C $\varphi :E(G)\to {\mathbb{C}}$ ,这样,对于所有 e∈ E ( G ) $e\in E(G)$ ,复数 φ ( e ) $\varphi (e)$ 的欧氏规范位于区间 [ 1 , r - 1 ]。 $[1,r-1]$ 并且,对于每个顶点,流入流量等于流出流量。无桥图 G $G$ 的复流数用 ϕ C ( G ) ${\phi }_{{\mathbb{C}}}(G)$ 表示,是实数 r $r$ 中的最小值,使得 G $G$ 可以容纳无处为零的复 r $r$ 流。即使对于非常小的对称图,精确计算 ϕ C ${\phi }_{\mathbb{C}}$ 似乎也是一项艰巨的任务。特别是,j C ${\phi }_{\mathbb{C}}$的精确值只有在可以微不足道地证明下界的图族中才是已知的。在这里,我们利用几何和组合论证,以立方图 G $G$ 的奇数周长(即最短奇数周期的长度)为单位,给出了 ϕ C ( G ) ${\phi }_{\mathbb{C}}(G)$ 的非微不足道的下界,并证明这个下界是严密的。这一结果依赖于车轮图 W n ${W}_{n}$ 复流数的精确计算。特别是,我们证明了对于每一个奇数 n $n$ ,ϕ C ( W n ) ${\phi }_{{\mathbb{C}}}({W}_{n})$ 的值产生于复数平面中根据 n $n$ modulo 6 的同余式的三个合适配置点之一。
A lower bound for the complex flow number of a graph: A geometric approach
Let be a real number. A complex nowhere-zero -flow on a graph is an orientation of together with an assignment such that, for all , the Euclidean norm of the complex number lies in the interval and, for every vertex, the incoming flow is equal to the outgoing flow. The complex flow number of a bridgeless graph , denoted by , is the minimum of the real numbers such that admits a complex nowhere-zero -flow. The exact computation of seems to be a hard task even for very small and symmetric graphs. In particular, the exact value of is known only for families of graphs where a lower bound can be trivially proved. Here, we use geometric and combinatorial arguments to give a nontrivial lower bound for in terms of the odd-girth of a cubic graph (i.e., the length of a shortest odd cycle) and we show that this lower bound is tight. This result relies on the exact computation of the complex flow number of the wheel graph . In particular, we show that for every odd , the value of arises from one of three suitable configurations of points in the complex plane according to the congruence of modulo 6.
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .