具有 d+4 个面的紧凑双曲 Coxeter d 多面体的近似分类及相关维度边界

IF 1 3区 数学 Q1 MATHEMATICS
Amanda Burcroff
{"title":"具有 d+4 个面的紧凑双曲 Coxeter d 多面体的近似分类及相关维度边界","authors":"Amanda Burcroff","doi":"10.1016/j.ejc.2024.103957","DOIUrl":null,"url":null,"abstract":"<div><p>We complete the classification of compact hyperbolic Coxeter <span><math><mi>d</mi></math></span>-polytopes with <span><math><mrow><mi>d</mi><mo>+</mo><mn>4</mn></mrow></math></span> facets for <span><math><mrow><mi>d</mi><mo>=</mo><mn>4</mn></mrow></math></span> and 5. By previous work of Felikson and Tumarkin, the only remaining dimension where new polytopes may arise is <span><math><mrow><mi>d</mi><mo>=</mo><mn>6</mn></mrow></math></span>. We derive a new method for generating the combinatorial types of these polytopes via the classification of point set order types. In dimensions 4 and 5, there are 348 and 51 polytopes, respectively, yielding many new examples for further study (also discovered independently by Ma and Zheng).</p><p>We furthermore provide new upper bounds on the dimension <span><math><mi>d</mi></math></span> of compact hyperbolic Coxeter polytopes with <span><math><mrow><mi>d</mi><mo>+</mo><mi>k</mi></mrow></math></span> facets for <span><math><mrow><mi>k</mi><mo>≤</mo><mn>10</mn></mrow></math></span>. It was shown by Vinberg in 1985 that for any <span><math><mi>k</mi></math></span>, we have <span><math><mrow><mi>d</mi><mo>≤</mo><mn>29</mn></mrow></math></span>, and no better bounds have previously been published for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>. As a consequence of our bounds, we prove that a compact hyperbolic Coxeter 29-polytope has at least 40 facets.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near classification of compact hyperbolic Coxeter d-polytopes with d+4 facets and related dimension bounds\",\"authors\":\"Amanda Burcroff\",\"doi\":\"10.1016/j.ejc.2024.103957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We complete the classification of compact hyperbolic Coxeter <span><math><mi>d</mi></math></span>-polytopes with <span><math><mrow><mi>d</mi><mo>+</mo><mn>4</mn></mrow></math></span> facets for <span><math><mrow><mi>d</mi><mo>=</mo><mn>4</mn></mrow></math></span> and 5. By previous work of Felikson and Tumarkin, the only remaining dimension where new polytopes may arise is <span><math><mrow><mi>d</mi><mo>=</mo><mn>6</mn></mrow></math></span>. We derive a new method for generating the combinatorial types of these polytopes via the classification of point set order types. In dimensions 4 and 5, there are 348 and 51 polytopes, respectively, yielding many new examples for further study (also discovered independently by Ma and Zheng).</p><p>We furthermore provide new upper bounds on the dimension <span><math><mi>d</mi></math></span> of compact hyperbolic Coxeter polytopes with <span><math><mrow><mi>d</mi><mo>+</mo><mi>k</mi></mrow></math></span> facets for <span><math><mrow><mi>k</mi><mo>≤</mo><mn>10</mn></mrow></math></span>. It was shown by Vinberg in 1985 that for any <span><math><mi>k</mi></math></span>, we have <span><math><mrow><mi>d</mi><mo>≤</mo><mn>29</mn></mrow></math></span>, and no better bounds have previously been published for <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>. As a consequence of our bounds, we prove that a compact hyperbolic Coxeter 29-polytope has at least 40 facets.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000428\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000428","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们完成了 d=4 和 5 时具有 d+4 个面的紧凑双曲柯赛特 d 多面体的分类。根据 Felikson 和 Tumarkin 之前的研究,可能出现新多面体的维数只剩下 d=6。我们通过对点集序类型的分类,推导出一种生成这些多边形组合类型的新方法。在维数 4 和 5 中,分别有 348 个和 51 个多面体,产生了许多供进一步研究的新例子(也是由马和郑独立发现的)。此外,我们还为 k≤10 时具有 d+k 个面的紧凑双曲考斯特多面体的维数 d 提供了新的上限。文伯格曾在 1985 年证明,对于任意 k,我们都有 d≤29,而对于 k≥5,以前还没有发表过更好的界限。根据我们的界值,我们证明了紧凑双曲考斯特 29 多面体至少有 40 个面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near classification of compact hyperbolic Coxeter d-polytopes with d+4 facets and related dimension bounds

We complete the classification of compact hyperbolic Coxeter d-polytopes with d+4 facets for d=4 and 5. By previous work of Felikson and Tumarkin, the only remaining dimension where new polytopes may arise is d=6. We derive a new method for generating the combinatorial types of these polytopes via the classification of point set order types. In dimensions 4 and 5, there are 348 and 51 polytopes, respectively, yielding many new examples for further study (also discovered independently by Ma and Zheng).

We furthermore provide new upper bounds on the dimension d of compact hyperbolic Coxeter polytopes with d+k facets for k10. It was shown by Vinberg in 1985 that for any k, we have d29, and no better bounds have previously been published for k5. As a consequence of our bounds, we prove that a compact hyperbolic Coxeter 29-polytope has at least 40 facets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信