Maria Nelago Kanyama , Fungai Bhunu Shava , Attle M Gamundani , Andreas Hartmann
{"title":"智能水表网络中的异常识别:促进提高用水效率","authors":"Maria Nelago Kanyama , Fungai Bhunu Shava , Attle M Gamundani , Andreas Hartmann","doi":"10.1016/j.pce.2024.103592","DOIUrl":null,"url":null,"abstract":"<div><p>Smart Water Metering Networks (SWMNs) stand as pivotal infrastructure, crucial for communities and industries. The escalating value of water resources due to climate change and overexploitation underscores the urgency of optimizing these networks for efficiency and resilience. This study focuses on identifying anomalies within SWMNs to address challenges impeding efficient water resource management. Leveraging a comprehensive 72-month dataset from Windhoek, Namibia, this research employs a meticulous analytical approach to unveil diverse anomaly types prevalent within SWMNs. Anomalies, including irregular consumption patterns, leakages, and inaccurate meters, contribute significantly to both apparent and real losses. By scrutinizing this dataset, the study reveals nuanced anomaly patterns like persistent zero consumption and unexpected fluctuations, highlighting the pervasive nature of these issues within the network. The findings not only shed light on these multifaceted anomalies but also lay the groundwork for future advancements in machine learning-based anomaly detection techniques. This research holds promise beyond academia, offering practical implications for water utility management. Identifying and understanding these anomalies serves as a stepping stone toward developing robust detection systems, ultimately fostering heightened efficiency and resilience in water networks. This study serves as a catalyst for strategic improvements, enabling more sustainable and efficient utilization of water resources amidst evolving environmental challenges.</p></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"134 ","pages":"Article 103592"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalies identification in Smart Water Metering Networks: Fostering improved water efficiency\",\"authors\":\"Maria Nelago Kanyama , Fungai Bhunu Shava , Attle M Gamundani , Andreas Hartmann\",\"doi\":\"10.1016/j.pce.2024.103592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Smart Water Metering Networks (SWMNs) stand as pivotal infrastructure, crucial for communities and industries. The escalating value of water resources due to climate change and overexploitation underscores the urgency of optimizing these networks for efficiency and resilience. This study focuses on identifying anomalies within SWMNs to address challenges impeding efficient water resource management. Leveraging a comprehensive 72-month dataset from Windhoek, Namibia, this research employs a meticulous analytical approach to unveil diverse anomaly types prevalent within SWMNs. Anomalies, including irregular consumption patterns, leakages, and inaccurate meters, contribute significantly to both apparent and real losses. By scrutinizing this dataset, the study reveals nuanced anomaly patterns like persistent zero consumption and unexpected fluctuations, highlighting the pervasive nature of these issues within the network. The findings not only shed light on these multifaceted anomalies but also lay the groundwork for future advancements in machine learning-based anomaly detection techniques. This research holds promise beyond academia, offering practical implications for water utility management. Identifying and understanding these anomalies serves as a stepping stone toward developing robust detection systems, ultimately fostering heightened efficiency and resilience in water networks. This study serves as a catalyst for strategic improvements, enabling more sustainable and efficient utilization of water resources amidst evolving environmental challenges.</p></div>\",\"PeriodicalId\":54616,\"journal\":{\"name\":\"Physics and Chemistry of the Earth\",\"volume\":\"134 \",\"pages\":\"Article 103592\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of the Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474706524000500\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524000500","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Anomalies identification in Smart Water Metering Networks: Fostering improved water efficiency
Smart Water Metering Networks (SWMNs) stand as pivotal infrastructure, crucial for communities and industries. The escalating value of water resources due to climate change and overexploitation underscores the urgency of optimizing these networks for efficiency and resilience. This study focuses on identifying anomalies within SWMNs to address challenges impeding efficient water resource management. Leveraging a comprehensive 72-month dataset from Windhoek, Namibia, this research employs a meticulous analytical approach to unveil diverse anomaly types prevalent within SWMNs. Anomalies, including irregular consumption patterns, leakages, and inaccurate meters, contribute significantly to both apparent and real losses. By scrutinizing this dataset, the study reveals nuanced anomaly patterns like persistent zero consumption and unexpected fluctuations, highlighting the pervasive nature of these issues within the network. The findings not only shed light on these multifaceted anomalies but also lay the groundwork for future advancements in machine learning-based anomaly detection techniques. This research holds promise beyond academia, offering practical implications for water utility management. Identifying and understanding these anomalies serves as a stepping stone toward developing robust detection systems, ultimately fostering heightened efficiency and resilience in water networks. This study serves as a catalyst for strategic improvements, enabling more sustainable and efficient utilization of water resources amidst evolving environmental challenges.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).