攀爬机制是了解热带地区藤本植物生态的核心特征

IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY
Arildo S. Dias, Rafael S. Oliveira, Fernando R. Martins, Frans Bongers, Niels P. R. Anten, Frank J. Sterck
{"title":"攀爬机制是了解热带地区藤本植物生态的核心特征","authors":"Arildo S. Dias,&nbsp;Rafael S. Oliveira,&nbsp;Fernando R. Martins,&nbsp;Frans Bongers,&nbsp;Niels P. R. Anten,&nbsp;Frank J. Sterck","doi":"10.1111/geb.13846","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Lianas are a central component of tropical forests. However, how the type of climbing mechanisms is related to the functional and taxonomic diversity of lianas across the tropics, remains largely unresolved. Here, we tested two main hypotheses: (i) the functional diversity of lianas differs with climbing mechanism (active and passive) and (ii) the association between taxonomic diversity with contemporary climate, paleoclimate, forest structure and phylogeny differ between climbing mechanisms.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Tropical forests.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>Present.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Terrestrial plants.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We assembled functional traits and the type of climbing mechanism for 702 liana species and used the World Checklist of Vascular Plants (WCVP v.2.0) to standardize species names, map geographical distribution and estimate taxonomic richness. We used kernel density n-dimensional hypervolume to estimate the functional diversity of each type of climbing mechanism. We compared the environmental response of taxonomic richness of each type of climbing mechanism, active and passive, to the response of overall liana species richness. We assessed the magnitude and direction of the environmental response considering variables of climate, soil fertility and forest structure.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found that active climbing exhibits a higher functional richness than passive climbing. Richness patterns of active and passive climbing mechanisms were mainly driven by contemporary climate, paleoclimate and phylogenetic relatedness. More importantly, paleoclimate was negatively associated with active climbing and positively associated with passive climbing.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Our study highlights differences in functional diversity (richness, dispersion, evenness and originality) between active and passive climbing species, likely reflecting their distinct ecological strategies for resource use, stress tolerance and dispersal. Integrating taxonomic and functional diversity metrics with information about the type of climbing mechanism provides deeper insights into the ecology and response of lianas to climate change.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 7","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13846","citationCount":"0","resultStr":"{\"title\":\"Climbing mechanisms as a central trait to understand the ecology of lianas across the tropics\",\"authors\":\"Arildo S. Dias,&nbsp;Rafael S. Oliveira,&nbsp;Fernando R. Martins,&nbsp;Frans Bongers,&nbsp;Niels P. R. Anten,&nbsp;Frank J. Sterck\",\"doi\":\"10.1111/geb.13846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aims</h3>\\n \\n <p>Lianas are a central component of tropical forests. However, how the type of climbing mechanisms is related to the functional and taxonomic diversity of lianas across the tropics, remains largely unresolved. Here, we tested two main hypotheses: (i) the functional diversity of lianas differs with climbing mechanism (active and passive) and (ii) the association between taxonomic diversity with contemporary climate, paleoclimate, forest structure and phylogeny differ between climbing mechanisms.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Tropical forests.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>Present.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Terrestrial plants.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We assembled functional traits and the type of climbing mechanism for 702 liana species and used the World Checklist of Vascular Plants (WCVP v.2.0) to standardize species names, map geographical distribution and estimate taxonomic richness. We used kernel density n-dimensional hypervolume to estimate the functional diversity of each type of climbing mechanism. We compared the environmental response of taxonomic richness of each type of climbing mechanism, active and passive, to the response of overall liana species richness. We assessed the magnitude and direction of the environmental response considering variables of climate, soil fertility and forest structure.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We found that active climbing exhibits a higher functional richness than passive climbing. Richness patterns of active and passive climbing mechanisms were mainly driven by contemporary climate, paleoclimate and phylogenetic relatedness. More importantly, paleoclimate was negatively associated with active climbing and positively associated with passive climbing.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>Our study highlights differences in functional diversity (richness, dispersion, evenness and originality) between active and passive climbing species, likely reflecting their distinct ecological strategies for resource use, stress tolerance and dispersal. Integrating taxonomic and functional diversity metrics with information about the type of climbing mechanism provides deeper insights into the ecology and response of lianas to climate change.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 7\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13846\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13846\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13846","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

藤本植物是热带森林的核心组成部分。然而,在热带地区,藤本植物的攀援机制类型与藤本植物的功能和分类多样性之间的关系如何,在很大程度上仍未得到解决。在此,我们测试了两个主要假设:(i) 藤本植物的功能多样性随攀援机制(主动和被动)的不同而不同;(ii) 不同攀援机制下,分类多样性与当代气候、古气候、森林结构和系统发育之间的关联也不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Climbing mechanisms as a central trait to understand the ecology of lianas across the tropics

Climbing mechanisms as a central trait to understand the ecology of lianas across the tropics

Aims

Lianas are a central component of tropical forests. However, how the type of climbing mechanisms is related to the functional and taxonomic diversity of lianas across the tropics, remains largely unresolved. Here, we tested two main hypotheses: (i) the functional diversity of lianas differs with climbing mechanism (active and passive) and (ii) the association between taxonomic diversity with contemporary climate, paleoclimate, forest structure and phylogeny differ between climbing mechanisms.

Location

Tropical forests.

Time Period

Present.

Major Taxa Studied

Terrestrial plants.

Methods

We assembled functional traits and the type of climbing mechanism for 702 liana species and used the World Checklist of Vascular Plants (WCVP v.2.0) to standardize species names, map geographical distribution and estimate taxonomic richness. We used kernel density n-dimensional hypervolume to estimate the functional diversity of each type of climbing mechanism. We compared the environmental response of taxonomic richness of each type of climbing mechanism, active and passive, to the response of overall liana species richness. We assessed the magnitude and direction of the environmental response considering variables of climate, soil fertility and forest structure.

Results

We found that active climbing exhibits a higher functional richness than passive climbing. Richness patterns of active and passive climbing mechanisms were mainly driven by contemporary climate, paleoclimate and phylogenetic relatedness. More importantly, paleoclimate was negatively associated with active climbing and positively associated with passive climbing.

Main Conclusions

Our study highlights differences in functional diversity (richness, dispersion, evenness and originality) between active and passive climbing species, likely reflecting their distinct ecological strategies for resource use, stress tolerance and dispersal. Integrating taxonomic and functional diversity metrics with information about the type of climbing mechanism provides deeper insights into the ecology and response of lianas to climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Ecology and Biogeography
Global Ecology and Biogeography 环境科学-生态学
CiteScore
12.10
自引率
3.10%
发文量
170
审稿时长
3 months
期刊介绍: Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信