Traymon E. Beavers, Ge Cheng, Yajie Duan, Javier Cabrera, Mariusz Lubomirski, Dhammika Amaratunga, Jeffrey E. Teigler
{"title":"数据块:在保留数据结构的同时减少大数据的方法","authors":"Traymon E. Beavers, Ge Cheng, Yajie Duan, Javier Cabrera, Mariusz Lubomirski, Dhammika Amaratunga, Jeffrey E. Teigler","doi":"10.1080/10618600.2024.2341896","DOIUrl":null,"url":null,"abstract":"Big data, with N×P dimension where N is extremely large, has created new challenges for data analysis, particularly in the realm of creating meaningful clusters of data. Clustering techniques, suc...","PeriodicalId":15422,"journal":{"name":"Journal of Computational and Graphical Statistics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Nuggets: A Method for Reducing Big Data While Preserving Data Structure\",\"authors\":\"Traymon E. Beavers, Ge Cheng, Yajie Duan, Javier Cabrera, Mariusz Lubomirski, Dhammika Amaratunga, Jeffrey E. Teigler\",\"doi\":\"10.1080/10618600.2024.2341896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data, with N×P dimension where N is extremely large, has created new challenges for data analysis, particularly in the realm of creating meaningful clusters of data. Clustering techniques, suc...\",\"PeriodicalId\":15422,\"journal\":{\"name\":\"Journal of Computational and Graphical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Graphical Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10618600.2024.2341896\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Graphical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10618600.2024.2341896","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
大数据的维度为 N×P,其中 N 极其庞大,这给数据分析带来了新的挑战,尤其是在创建有意义的数据集群方面。聚类技术,如...
Data Nuggets: A Method for Reducing Big Data While Preserving Data Structure
Big data, with N×P dimension where N is extremely large, has created new challenges for data analysis, particularly in the realm of creating meaningful clusters of data. Clustering techniques, suc...
期刊介绍:
The Journal of Computational and Graphical Statistics (JCGS) presents the very latest techniques on improving and extending the use of computational and graphical methods in statistics and data analysis. Established in 1992, this journal contains cutting-edge research, data, surveys, and more on numerical graphical displays and methods, and perception. Articles are written for readers who have a strong background in statistics but are not necessarily experts in computing. Published in March, June, September, and December.