行星漫游车行驶过程中位置和姿态偏差的实验研究与分析

IF 2.4 3区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Zhicheng Jia , Jingfu Jin , Xinju Dong , Lianbin He , Meng Zou , Yingchun Qi
{"title":"行星漫游车行驶过程中位置和姿态偏差的实验研究与分析","authors":"Zhicheng Jia ,&nbsp;Jingfu Jin ,&nbsp;Xinju Dong ,&nbsp;Lianbin He ,&nbsp;Meng Zou ,&nbsp;Yingchun Qi","doi":"10.1016/j.jterra.2024.100974","DOIUrl":null,"url":null,"abstract":"<div><p>Reducing the position and attitude deviation of the planetary rover while driving is an important issue that needs to be considered in the design and controller development of the new types of planetary rovers at this stage. It is also the basis for whether the rovers can carry out exploration missions with high precision requirements on the complex terrain of planetary surfaces. A systematic study of the deviation problems generated by planetary rovers under the most basic open-loop path control is of great significance to improve the effectiveness of planetary detection. In this study, based on simulated Martian terrain and soil, planetary rover driving experiments under various scenes were conducted to test the resulting position and attitude deviation and evaluation indexes under different path types, terrain distributions, driving speeds and steering radius. By combining the experimental phenomena, the action characteristics of single wheel with ground and its influence on the state of the whole vehicle during the deviation generation process are analyzed. And finally, the discussion and conclusion are directed to how to optimize the planetary rover path control. These systematic experiments and analyses can provide valuable references for researchers engaged in the development of mobile controllers for planetary rovers.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"113 ","pages":"Article 100974"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study and analysis of the position and attitude deviation of planetary rover during driving\",\"authors\":\"Zhicheng Jia ,&nbsp;Jingfu Jin ,&nbsp;Xinju Dong ,&nbsp;Lianbin He ,&nbsp;Meng Zou ,&nbsp;Yingchun Qi\",\"doi\":\"10.1016/j.jterra.2024.100974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reducing the position and attitude deviation of the planetary rover while driving is an important issue that needs to be considered in the design and controller development of the new types of planetary rovers at this stage. It is also the basis for whether the rovers can carry out exploration missions with high precision requirements on the complex terrain of planetary surfaces. A systematic study of the deviation problems generated by planetary rovers under the most basic open-loop path control is of great significance to improve the effectiveness of planetary detection. In this study, based on simulated Martian terrain and soil, planetary rover driving experiments under various scenes were conducted to test the resulting position and attitude deviation and evaluation indexes under different path types, terrain distributions, driving speeds and steering radius. By combining the experimental phenomena, the action characteristics of single wheel with ground and its influence on the state of the whole vehicle during the deviation generation process are analyzed. And finally, the discussion and conclusion are directed to how to optimize the planetary rover path control. These systematic experiments and analyses can provide valuable references for researchers engaged in the development of mobile controllers for planetary rovers.</p></div>\",\"PeriodicalId\":50023,\"journal\":{\"name\":\"Journal of Terramechanics\",\"volume\":\"113 \",\"pages\":\"Article 100974\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Terramechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022489824000168\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000168","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

减少行星漫游车在行驶过程中的位置和姿态偏差,是现阶段新型行星漫游车设计和控制器开发需要考虑的一个重要问题。这也是漫游车能否在地形复杂的行星表面执行高精度要求的探测任务的基础。系统研究行星漫游车在最基本的开环路径控制下产生的偏差问题,对于提高行星探测的有效性具有重要意义。本研究以模拟火星地形和土壤为基础,进行了行星漫游车在不同场景下的行驶实验,测试了不同路径类型、地形分布、行驶速度和转向半径下产生的位置和姿态偏差及评价指标。结合实验现象,分析了偏差产生过程中单轮与地面的作用特性及其对整车状态的影响。最后,针对如何优化行星漫游车路径控制进行了讨论和总结。这些系统的实验和分析可为从事行星漫游车移动控制器开发的研究人员提供有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Experimental study and analysis of the position and attitude deviation of planetary rover during driving

Experimental study and analysis of the position and attitude deviation of planetary rover during driving

Reducing the position and attitude deviation of the planetary rover while driving is an important issue that needs to be considered in the design and controller development of the new types of planetary rovers at this stage. It is also the basis for whether the rovers can carry out exploration missions with high precision requirements on the complex terrain of planetary surfaces. A systematic study of the deviation problems generated by planetary rovers under the most basic open-loop path control is of great significance to improve the effectiveness of planetary detection. In this study, based on simulated Martian terrain and soil, planetary rover driving experiments under various scenes were conducted to test the resulting position and attitude deviation and evaluation indexes under different path types, terrain distributions, driving speeds and steering radius. By combining the experimental phenomena, the action characteristics of single wheel with ground and its influence on the state of the whole vehicle during the deviation generation process are analyzed. And finally, the discussion and conclusion are directed to how to optimize the planetary rover path control. These systematic experiments and analyses can provide valuable references for researchers engaged in the development of mobile controllers for planetary rovers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Terramechanics
Journal of Terramechanics 工程技术-工程:环境
CiteScore
5.90
自引率
8.30%
发文量
33
审稿时长
15.3 weeks
期刊介绍: The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics. The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities. The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信