基于机器学习和遥感的时间序列分析,预测埃塞俄比亚西南部博雷纳区的干旱风险

IF 2.6 3区 环境科学与生态学 Q2 ECOLOGY
Amanuel Kumsa Bojer , Bereket Hailu Biru , Ayad M. Fadhil Al-Quraishi , Taye Girma Debelee , Worku Gachena Negera , Firesew Feyiso Woldesillasie , Sintayehu Zekarias Esubalew
{"title":"基于机器学习和遥感的时间序列分析,预测埃塞俄比亚西南部博雷纳区的干旱风险","authors":"Amanuel Kumsa Bojer ,&nbsp;Bereket Hailu Biru ,&nbsp;Ayad M. Fadhil Al-Quraishi ,&nbsp;Taye Girma Debelee ,&nbsp;Worku Gachena Negera ,&nbsp;Firesew Feyiso Woldesillasie ,&nbsp;Sintayehu Zekarias Esubalew","doi":"10.1016/j.jaridenv.2024.105160","DOIUrl":null,"url":null,"abstract":"<div><p>Drought, a complex natural hazard, poses significant challenges for scholars in drought risk management due to the perceived lack of suitable assessment, prediction, and monitoring tools. Addressing these challenges requires sophisticated tools capable of precise and timely assessments. This study leverages the rapid advancements in machine learning (ML) and remote sensing (RS) to develop models for anticipating and estimating drought risk, particularly focusing on identifying affected and sensitive locations in Ethiopia's Borena Zone. The research involves a two-phase investigation, examining historical drought patterns and forecasting scenarios for 2028. The GridSearch algorithm is employed for optimal hyperparameter tuning in ML, highlighting the CatBoost algorithm as the most accurate predictor for the Standardized Precipitation Index (SPI). With impressive performance metrics, including Mean Squared Error (MSE) of 0.017, Mean Absolute Error (MAE) of 0.102, Root Mean Square Error (RMSE) of 0.129, and an R-squared (R<sup>2</sup>) value of 0.84, this study excels in providing precise spatiotemporal accuracy for drought prediction. The findings underscore the importance of time-series drought prediction, offering crucial insights for decision-makers and planners to address and mitigate drought impacts at various scales. This study contributes valuable information by emphasizing the significance of understanding drought occurrence's temporal and spatial dimensions.</p></div>","PeriodicalId":51080,"journal":{"name":"Journal of Arid Environments","volume":"222 ","pages":"Article 105160"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning and remote sensing based time series analysis for drought risk prediction in Borena Zone, Southwest Ethiopia\",\"authors\":\"Amanuel Kumsa Bojer ,&nbsp;Bereket Hailu Biru ,&nbsp;Ayad M. Fadhil Al-Quraishi ,&nbsp;Taye Girma Debelee ,&nbsp;Worku Gachena Negera ,&nbsp;Firesew Feyiso Woldesillasie ,&nbsp;Sintayehu Zekarias Esubalew\",\"doi\":\"10.1016/j.jaridenv.2024.105160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drought, a complex natural hazard, poses significant challenges for scholars in drought risk management due to the perceived lack of suitable assessment, prediction, and monitoring tools. Addressing these challenges requires sophisticated tools capable of precise and timely assessments. This study leverages the rapid advancements in machine learning (ML) and remote sensing (RS) to develop models for anticipating and estimating drought risk, particularly focusing on identifying affected and sensitive locations in Ethiopia's Borena Zone. The research involves a two-phase investigation, examining historical drought patterns and forecasting scenarios for 2028. The GridSearch algorithm is employed for optimal hyperparameter tuning in ML, highlighting the CatBoost algorithm as the most accurate predictor for the Standardized Precipitation Index (SPI). With impressive performance metrics, including Mean Squared Error (MSE) of 0.017, Mean Absolute Error (MAE) of 0.102, Root Mean Square Error (RMSE) of 0.129, and an R-squared (R<sup>2</sup>) value of 0.84, this study excels in providing precise spatiotemporal accuracy for drought prediction. The findings underscore the importance of time-series drought prediction, offering crucial insights for decision-makers and planners to address and mitigate drought impacts at various scales. This study contributes valuable information by emphasizing the significance of understanding drought occurrence's temporal and spatial dimensions.</p></div>\",\"PeriodicalId\":51080,\"journal\":{\"name\":\"Journal of Arid Environments\",\"volume\":\"222 \",\"pages\":\"Article 105160\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Arid Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140196324000405\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Environments","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140196324000405","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

干旱是一种复杂的自然灾害,由于缺乏合适的评估、预测和监测工具,学者们在干旱风险管理方面面临着巨大挑战。要应对这些挑战,需要能够进行精确、及时评估的先进工具。本研究利用机器学习(ML)和遥感(RS)的快速发展,开发了预测和估算干旱风险的模型,尤其侧重于确定埃塞俄比亚博雷纳区受影响和敏感的地点。这项研究包括两个阶段的调查,即研究历史干旱模式和预测 2028 年的旱情。GridSearch 算法用于优化 ML 中的超参数调整,突出了 CatBoost 算法作为标准化降水指数 (SPI) 最准确预测工具的作用。该研究的平均平方误差 (MSE) 为 0.017,平均绝对误差 (MAE) 为 0.102,均方根误差 (RMSE) 为 0.129,R2 为 0.84,性能指标令人印象深刻,在为干旱预测提供精确的时空精度方面表现出色。研究结果强调了时间序列干旱预测的重要性,为决策者和规划者应对和减轻各种规模的干旱影响提供了重要见解。这项研究强调了了解干旱发生的时空维度的重要性,从而提供了宝贵的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine learning and remote sensing based time series analysis for drought risk prediction in Borena Zone, Southwest Ethiopia

Machine learning and remote sensing based time series analysis for drought risk prediction in Borena Zone, Southwest Ethiopia

Drought, a complex natural hazard, poses significant challenges for scholars in drought risk management due to the perceived lack of suitable assessment, prediction, and monitoring tools. Addressing these challenges requires sophisticated tools capable of precise and timely assessments. This study leverages the rapid advancements in machine learning (ML) and remote sensing (RS) to develop models for anticipating and estimating drought risk, particularly focusing on identifying affected and sensitive locations in Ethiopia's Borena Zone. The research involves a two-phase investigation, examining historical drought patterns and forecasting scenarios for 2028. The GridSearch algorithm is employed for optimal hyperparameter tuning in ML, highlighting the CatBoost algorithm as the most accurate predictor for the Standardized Precipitation Index (SPI). With impressive performance metrics, including Mean Squared Error (MSE) of 0.017, Mean Absolute Error (MAE) of 0.102, Root Mean Square Error (RMSE) of 0.129, and an R-squared (R2) value of 0.84, this study excels in providing precise spatiotemporal accuracy for drought prediction. The findings underscore the importance of time-series drought prediction, offering crucial insights for decision-makers and planners to address and mitigate drought impacts at various scales. This study contributes valuable information by emphasizing the significance of understanding drought occurrence's temporal and spatial dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Arid Environments
Journal of Arid Environments 环境科学-环境科学
CiteScore
5.70
自引率
3.70%
发文量
144
审稿时长
55 days
期刊介绍: The Journal of Arid Environments is an international journal publishing original scientific and technical research articles on physical, biological and cultural aspects of arid, semi-arid, and desert environments. As a forum of multi-disciplinary and interdisciplinary dialogue it addresses research on all aspects of arid environments and their past, present and future use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信