Fengyun Ren, Fan Wu, Xin Wu, Tongtong Bao, Yucheng Jie, Le Gao
{"title":"用于木质纤维素解构的真菌系统:从酶机制到水解优化","authors":"Fengyun Ren, Fan Wu, Xin Wu, Tongtong Bao, Yucheng Jie, Le Gao","doi":"10.1111/gcbb.13130","DOIUrl":null,"url":null,"abstract":"<p>Lignocellulosic biomass is an abundant renewable feedstock, but its complex structure of lignocellulose poses barriers to its enzymatic hydrolysis and fermentation. Fungi possess diverse lignocellulolytic enzyme systems that synergistically deconstruct lignocellulose into soluble sugars for fermentation. This review elucidates recent advances in understanding the molecular mechanisms underpinning fungal degradation of lignocellulose. We analyze major enzyme classes tailored by fungi to depolymerize cellulose, hemicellulose, and lignin. Highlighted are the concerted actions and intimate partnerships between these biomass-degrading enzymes. Current challenges impeding large-scale implementation of enzymatic hydrolysis are discussed, along with emerging biotechnological opportunities. Advanced pretreatments, high-throughput enzyme engineering platforms, and machine learning or artificial intelligence-guided lignocellulolytic enzyme cocktail optimization represent promising ways to improve hydrolytic efficiencies. Elucidating the coordinated interplay and regulation of fungal lignocellulolytic machinery can facilitate optimization of fungal biotechnology platforms. Harnessing the efficiency of fungal biomass deconstruction promises to enhance the development of biorefinery processes for sustainable bioenergy.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 5","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13130","citationCount":"0","resultStr":"{\"title\":\"Fungal systems for lignocellulose deconstruction: From enzymatic mechanisms to hydrolysis optimization\",\"authors\":\"Fengyun Ren, Fan Wu, Xin Wu, Tongtong Bao, Yucheng Jie, Le Gao\",\"doi\":\"10.1111/gcbb.13130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lignocellulosic biomass is an abundant renewable feedstock, but its complex structure of lignocellulose poses barriers to its enzymatic hydrolysis and fermentation. Fungi possess diverse lignocellulolytic enzyme systems that synergistically deconstruct lignocellulose into soluble sugars for fermentation. This review elucidates recent advances in understanding the molecular mechanisms underpinning fungal degradation of lignocellulose. We analyze major enzyme classes tailored by fungi to depolymerize cellulose, hemicellulose, and lignin. Highlighted are the concerted actions and intimate partnerships between these biomass-degrading enzymes. Current challenges impeding large-scale implementation of enzymatic hydrolysis are discussed, along with emerging biotechnological opportunities. Advanced pretreatments, high-throughput enzyme engineering platforms, and machine learning or artificial intelligence-guided lignocellulolytic enzyme cocktail optimization represent promising ways to improve hydrolytic efficiencies. Elucidating the coordinated interplay and regulation of fungal lignocellulolytic machinery can facilitate optimization of fungal biotechnology platforms. Harnessing the efficiency of fungal biomass deconstruction promises to enhance the development of biorefinery processes for sustainable bioenergy.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13130\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13130","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Fungal systems for lignocellulose deconstruction: From enzymatic mechanisms to hydrolysis optimization
Lignocellulosic biomass is an abundant renewable feedstock, but its complex structure of lignocellulose poses barriers to its enzymatic hydrolysis and fermentation. Fungi possess diverse lignocellulolytic enzyme systems that synergistically deconstruct lignocellulose into soluble sugars for fermentation. This review elucidates recent advances in understanding the molecular mechanisms underpinning fungal degradation of lignocellulose. We analyze major enzyme classes tailored by fungi to depolymerize cellulose, hemicellulose, and lignin. Highlighted are the concerted actions and intimate partnerships between these biomass-degrading enzymes. Current challenges impeding large-scale implementation of enzymatic hydrolysis are discussed, along with emerging biotechnological opportunities. Advanced pretreatments, high-throughput enzyme engineering platforms, and machine learning or artificial intelligence-guided lignocellulolytic enzyme cocktail optimization represent promising ways to improve hydrolytic efficiencies. Elucidating the coordinated interplay and regulation of fungal lignocellulolytic machinery can facilitate optimization of fungal biotechnology platforms. Harnessing the efficiency of fungal biomass deconstruction promises to enhance the development of biorefinery processes for sustainable bioenergy.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.